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Abstract

This paper presents a method to retarget the motion of
a character to another in real-time. The technique is based
on inverse rate control, which computes the changes in joint
angles corresponding to the changes in end-effector posi-
tion. While tracking the multiple end-effector trajectories
of the original subject or character, our on-line motion re-
targetting also minimizes the joint angle differences by ex-
ploiting the kinematic redundancies of the animated model.
This method can generalize a captured motion for another
anthropometry to perform slightly different motion, while
preserving the original motion characteristics. Because the
above is done in on-line, a real-time performance can be
mapped to other characters. Moreover, if the method is used
interactively during motion capture session, the feedback of
retargetted motion on the screen provides more chances to
get satisfactory results. As a by-product, our algorithm can
be used to reduce measurement errors in restoring captured
motion. The data enhancement improves the accuracy in
both joint angles and end-effector positions. Experiments
prove that our retargetting algorithm preserves the high fre-
quency details of the original motion quite accurately.

1. Introduction

The dream of animating complex living creatures with
pure computation (such as inverse kinematics, or dynamic
control) proved impractical. Even though creatures are not
free from physics, their motion is not a direct consequence
of physics. Dynamic control can provide solutions based on
simplified assumptions about human motion. However, the
result tends to look quite mechanical.

If a high quality character animation has to be produced
during a short period of time, motion capture might be a
most reasonable choice these days. The captured data it-
self is for a specific person in performing specific motion.
Whenever the data needs to be reused, it has to be retar-

getted to account for the differences in the anthropometry
and motion. Therefore motion retargetting is emerging as
an important technique in recent character animation.

If the original motion characteristics are severely lost
during motion retargetting, the technique loses its merit
over the above pure computation approaches. The prob-
lem we try to solve in this paper can be summarized as: (1)
finding in real-time the motion retargetted to a new charac-
ter that has different anthropometric proportions, and (2) at
the same time, preserving the features of the original mo-
tion during the retargetting. (3) As a by-product, it is pos-
sible to use the above retargetting algorithm for enhancing
motion capture data so that the errors in joint angles and
end-effector positions are reduced.

On-line motion retargetting presented in this paper is
based on inverse rate control [17] (or resolved motion rate
control), which is a way to implement inverse kinematics
based on Jacobian. It computes the changes in joint an-
gles corresponding to the changes in end-effector position.
While tracking the multiple end-effector trajectories of the
original subject or character, our on-line motion retargetting
imitates the joint motion of the original character by ex-
ploiting the kinematic redundancies of the animated model.
Moreover, jerky motion is prevented since the next configu-
ration is dependent on the previous configuration in inverse
rate control. As will be shown in later experiments, the high
frequency details of the original motion, which carries im-
portant characteristics of the motion, are also well preserved
by our algorithm.

Figure 1 shows the on-line retargetting process schemat-
ically. The input is a stream of joint angle vectors �src of the
measured subject in the source motion and another stream
of the reference (or desired) end-effector positions x1 of the
animated character at discrete time ticks. The output is a
stream of joint angle vectors �des of the animated character
during the destination motion at corresponding time ticks.
The filter in the figure is causal. i.e., the output is calculated
based on the current and immediately previous input values,
but does not dependent on the future input. It explains why
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Figure 1. On-line Motion Retargetting Filter

it is called on-line.
If the retargetting can be done in on-line, real-time per-

formance can be mapped to another character, or the feed-
back of the retargetted animation can facilitate motion cap-
ture session so that satisfactory results can be obtained with
fewer trials. Since the memory required for on-line retarget-
ting does not increase with time, our algorithm can handle
an infinitely long sequence of motion.

The primary goal of our on-line motion retargetting
(OMR) is to track the given reference end-effector trajec-
tory x1(t), and the secondary goal is to imitate the pattern
of joint angle trajectory �src(t) as much as possible. There-
fore �src(t) carries the content to be retargetted, and x1(t)
carries the variations needed during the retargetting. For
example, when there is a bat-swing motion, we can obtain
different swing motions aiming at different hit positions by
specifying x1(t) appropriately.

As a by-product, our OMR algorithm can be used to re-
duce measurement errors in restoring captured motion. For
this data enhancement, we use captured position data for
x1(t) even though it can be calculated from �src(t) by for-
ward kinematic positioning, to recover from possible mea-
surement errors in joint angles. If the positioning of the pose
is done from joint angles alone, the errors can accumulate
as the forward kinematic positioning propagates toward the
end-effector. The end-effector position data x1(t) can be
utilized to limit the above error accumulation within a cer-
tain range.

In Section 2 recent work related with motion retarget-
ting is reviewed. Section 3 discusses inverse rate control
and its implementation, and Section 4 presents the formula-
tion of motion retagetting problem with inverse rate control.
Section 5 discusses how our OMR can be used to reduce
measurement errors in restoring captured motion. Section 6
shows the results obtained by our technique, and finally the
conclusion follows.

2. Related Work

Several techniques have been proposed for reusing or
altering existing motions. Witkin et al’s motion warping
[19] and Bruderlin et al’s motion displacement mapping [4]

discuss motion editing technique based on direct manipu-
lation of data curves. Bruderlin et al [4] and Unuma et al
[11] utilized signal processing techniques for motion edit-
ing. Wiley et al [18] proposed the interpolation synthesis
algorithm that chooses and combines most relevant motions
from the database to produce animation with a specific po-
sitional goals.

Though some of the techniques above can be used for
motion retargetting problem with user’s extra efforts, they
don’t specifically address the motion retargetting problem.
In [3], Boulic and Thalmann presented the combined direct
and inverse kinematic control technique for motion editing.
The concept called coach-trainee metaphor is very similar
to the motion retargetting problem formulation. The fun-
damental idea is to consider the joint motion of coach as
a reference input to trainee motion for the secondary task
exploiting the null space of the Jacobian when solving in-
verse kinematics. The inverse kinematic constraint is given
by half-space such as plane, cylinder, or sphere.

Although their approach shares the technique of utilizing
the redundancy in inverse kinematic control with ours, the
problem they solved is not the motion retargetting but is
rather a motion correction technique since the end-effector
constraint specified by half-spaces is not general to solve
the motion retargetting problem.

A method which is devoted to the motion retargetting
problem was proposed by Gleicher [6]. He used the space-
time constraint method that minimizes an objective function
g(x) subject to the constrains of the form f(x) = c. The
constraints can represent the ranges of parameters, or vari-
ous kinds of spatial-temporal relationship among the body
segments and the environment. The objective function is the
time integral of the signal displacement between the source
and destination motion. i.e.

g(x) =

Z
(msrc

�mdes)2dt: (1)

Since the whole interval has to be integrated to find the opti-
mal solution, the method is intrinsically an off-line process.

The global method as above can correlate frames back
and forth within the whole duration and thus generally pro-
duces more smooth results compared to the local method
such as our OMR technique. But the look-ahead property
of the global method is effective when the constraints are
imposed only at sparse key frames. Our OMR takes contin-
uous trajectories of constraints as input, so that it produces
globally coherent motion in spite of local computation. The
global coherence is also achieved from the effort to exploit
the redundancy of the system in resembling the original mo-
tion. The local coherence of the motion comes from the fact
that the adjacent frames are inter-related by the inverse rate
control. Therefore, without significant degradation of qual-
ity, our algorithm provides much faster and interactive way
of motion retargetting.



Bindiganavale and Badler [2] presented a method to ab-
stract and edit motion capture data. Their algorithm detects
significant events and abstracts constraints from the mo-
tion, and imposes those constraints to other character. The
constraints abstracted from the motion is solved by inverse
kinematics at significant frames and then those frames are
interpolated. Although the constraint abstraction is an im-
provement compared to the other techniques, the interpo-
lation technique might fail to preserve the high frequency
details if the key frames are sparsely spaced.

3. Inverse Rate Control

In an articulated figure, the joint configuration can be
related to the position and orientation of the end effector by
a kinematic mapping f : � ! X , which maps the joint
space � to Cartesian space X . The mapping is usually a
nonlinear equation given by

x1 = f1(�); (2)

where x1 is an m-dimensional vector and � is an n-
dimensional vector. m = 3 if we are interested only in
position, or m = 6 if we are interested in both position and
orientation of the end-effector. m can be 12 or 18 if we want
to impose multiple end-effector constraints.

If we differentiate the above equation, we obtain

_x1 = J1 _�; (3)

where _x1 and _� denote the end-effector positional velocity
and joint angle velocity, respectively. J1 is called Jacobian
and is an m� n matrix that linearly relates the end effector
velocity and joint angle velocity at the moment.

Given the end effector velocity, we can get joint angle ve-
locity by inverting the Jacobian. However, most articulated
figures have kinematic redundancy and thus the inverse of
Jacobian is not unique. (more specifically, m < n) There-
fore there are an infinite number of possible solutions that
satisfy Equation 3. Some criteria can be specified to pick
one that best fits for our purpose. One of popular criteria is
called the minimal norm solution

_� = J+1 _x1; (4)

where J+1 = JT1 (J1J
T

1 )
�1 is the pseudo inverse1 of J1.

Equation 4 gives a particular solution, and can be gen-
eralized to include all possible solutions by adding a term
from the null space of J1 as in

_� = J+1 _x1 + (I � J+1 J1)y; (5)

1We actually used damped least squares solution, _� = JT
1
(J1J

T

1
+

�2I)�1 _x1, to get consistent motion near the singularities [12, 16].

where y is an arbitrary n-dimensional vector. (I � J+1 J1)
projects y onto the null space of J1. This null space term
corresponds to the redundant degrees of freedom, and can
be utilized to perform secondary priority tasks [7, 10, 20,
21]. For example, consider the following task set.

primary task: x1 = f1(�); thus _x1 = J1 _�

secondary task: x2 = f2(�); thus _x2 = J2 _�

If the equation

_� = J+1 _x1 + (I � J+1 J1)J
+

2 _x2; (6)

is used for Equation 5, then the primary goal is accurately
achieved in the case of continuous domain2 and the sec-
ondary goal is also achieved in an optimal sense.

Another way to utilize the redundancy of the system is
to set y to the gradient��rg of a criterion function g(�) in
Equation 5. Then integration of Equation 5 tries to reduce
the value of g(�) while the end-effector is made to track the
given trajectory [9].

3.1. Closed-loop Inverse Rate Control and Its Dis-
crete Implementation

To control the articulated figure to follow given reference
end-effector trajectory x1(t), J

+

1
_x1(t) should be integrated

to give the value of �(t) (Equation 4). But this open-loop
fashion of integration can not eliminate the initial tracking
error e1(t0) = x1(t0) � xdes1 (t0), where xdes1 (t) is the re-
sulting end-effector position at time t in the destination mo-
tion.

Balestrino et al [1], Tsai and Orin [15], and Sciav-
icco and Siciliano [14, 13] proposed the closed-loop in-
verse kinematics (CLIK) scheme based on Jacobian pseudo-
inverse. CLIK leads to zero steady state error which means
that the error is exponentially convergent to zero for a fixed
target position. For CLIK, Equation 4 has to be modified to

_�(t) = J+1 ( _x1(t) +K1e1(t)); (7)

where K1 is a positive definite matrix we can provide. It
can be easily shown that as the smallest eigen value of
K1 becomes large, the convergence rate increases accord-
ingly since the error dynamics is governed by the relation
_e1 +K1e1 = 0. In a continuous time formulation such as
Equation 7, a large value of K1 is desirable. However, as
will be shown below an arbitrarily large K1 doesn’t guar-
antee convergence in implementing the discrete version of
Equation 7.

2In the discrete domain, since the Jacobian is a linear estimation of a
non-linear function, the integration can produce errors, especially when the
step size is large.



The difference equation corresponding to Equation 7 is
given by

��[n] = J+1 [n� 1](�x1[n] +K1e1[n]); (8)

where

��[n] = �[n]� �[n� 1];

and

�x1[n] = x1[n]� x1[n� 1];

e1[n] = x1[n]� xdes1 [n]: (9)

Here u[i] is the value of the function u(t) at the discrete
time ti.

Equation 8 is implicit: to compute ��[n] we need to
know the value of e1[n]. But computing e1[n] by Equation 9
in turn requires the value of xdes1 [n], which is not available
until ��[n] is known. Therefore, e1[n] should be estimated.
Below we show that any estimation based on the old values
(at n�1, n�2, : : : ) requiresK1 to be I for the best tracking
performance.

Suppose that we estimated e1[n] simply with e1[n � 1].
Then Equation 8 becomes

��[n] = J+1 [n� 1](�x1[n] +K1e1[n� 1]): (10)

To obtain the error equation, multiply J1[n�1] at both sides
of Equation 10 and we obtain

J1[n� 1]��[n] = �x1[n] +K1e1[n� 1]: (11)

Assuming that the step size is small enough, we can rewrite
the above equation as

�xdes1 [n] = �x1[n] +K1e1[n� 1]: (12)

With the relations e1[n] = x1[n]� xdes1 [n] and e1[n� 1] =
x1[n� 1]� xdes1 [n� 1], Equation 12 can be rewritten into

e1[n] = (I �K1)e1[n� 1]: (13)

Equation 13 reveals that the eigen values of I � K1

should be within the interval (�1; 1) to prevent the error
from growing indefinitely. Even with K1 = I the stabil-
ity is not guaranteed due to the nonlinearity of f1. (Note
that J1[n� 1]��[n] is approximated as �xdes1 [n] in Equa-
tion 12.) But in practice, we found that instability rarely
occurs at a usual sampling rate (30 � 60Hz) in dealing with
human motion.

If we include the secondary task x2 = f2(�), the open-
loop control law takes the form

_� = J+1 ( _x1 +K1e1) + (I � J+1 J1)J
+

2 _x2 (14)

To prevent from possible divergence due to errors, however,
a closed-loop version needs to be considered again. The
CLIK scheme including the secondary task based on Jaco-
bian transpose is given by

_� = J+1 ( _x1 +K1e1) + (I � J+1 J1)J
T

2 K2e2 (15)

where e2 = x2 � xdes2 . xdes2 is the actual result of the sec-
ondary task that tries to realize the given goal x2.

It is proven that e2 is ultimately bounded within a cer-
tain range and the tracking error for the primary task is not
affected by the second term of Equation 15 [13]. But again,
arbitrarily large K2 is not allowed in discrete implementa-
tion. With the estimation of e2[n] based on old values, a
reasonable choice for K2 is I .

The final CLIK scheme in discrete domain with K1 =
K2 = I is given by

��[n] =J+1 [n� 1](�x1[n] + ~e1[n]) +

(I � J+1 [n� 1]J1[n� 1])JT2 ~e2[n]: (16)

~e1[n] and ~e2[n] in Equation 16 are the estimations of e1[n]
and e2[n], respectively. Although any estimation scheme
based on the old values can not completely eliminate the er-
ror caused by the nonlinearity of f1, it can be reduced with
a higher order estimation for e1[n] than e1[n� 1], and con-
sequently can give better tracking performance. We found
that the estimation rule described below gives satisfactory
results.

Step 1 : �~�[n] = J+1 [n� 1]�x1[n]

Step 2 : ~xdes1 [n] = f1(�[n� 1] + �~�[n])

~xdes2 [n] = f2(�[n� 1] + �~�[n])

Step 3 : ~e1[n] = x1[n]� ~xdes1 [n]

~e2[n] = x2[n]� ~xdes2 [n]

The above procedures complete the discrete implemen-
tation of the CLIK algorithm with a secondary task.

3.2. Inverse Rate Control with Multiple End-
effector Trajectories

In this section, we discuss how to extend inverse rate
control to track multiple end-effector trajectories.

The serial chain is not suitable for modeling creatures
since underlying articulated structures contain branches. An
illustrative example is taken from human upper body, and is
shown in Figure 2. The model consists of spine and two
arms. The waist is the root of the kinematic tree structure,
and the two arms are branching at the top of the spine. If
both hands have their own goals to reach, and if inverse
kinematics is solved for these cases separately, then the
spine angles will differ in the solutions.
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Figure 2. Kinematic structure of human upper
body

In [22], Zhao and Balder solved this problem by a
weighted sum of independently obtained gradients, each of
which directs its corresponding end-effector to a goal posi-
tion. However, the effects of different weights are not easily
predictable. Depending on the weight assignment, their al-
gorithm can fail to find an inverse kinematic solution even
if all the constraints can be actually met.

Intrinsically, the problem of finding inverse kinematic
solution of multiple constraints doesn’t require any weight
or priority assignment: if all the end-effector constraints
can be met, then it should be possible without consider-
ing weights or assigning priorities to each end-effector con-
straint.

Compared with Zhao and Badler’s algorithm, Jacobian
based inverse rate control gives a quite simple and intuitive
solution to the problem. The only thing we have to do in or-
der to incorporate multiple end-effector constraints is con-
catenating the end-effector vectors and composing the Jaco-
bian appropriately. In the above example, the end effector
vector x1 should be 12-dimensional vector and the Jacobian
J1 becomes 12 � 33 matrix (two end-effector constraints
with six DOFs for each end-effector, and eleven joints with
three DOFs for each joint). Of course, the Jacobian will
have many zeroes where the joint angle and the end-effector
have no relation such as left elbow joint and right hand. In
inverse rate control, the above conflict of the spine angles
is resolved during the computation of the pseudo inverse of
the Jacobian.

4. Motion Retargetting with Task Priority
Strategy

In general, we can formulate the motion retargetting
problem with the following task set, and can solve for �des.

primary task: x1 = f1(�
des) (17)

secondary task: x2 = f2(�
des) (18)
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Figure 3. Closed-loop control scheme with a
secondary task

x1 in the above is the desired end-effector trajectories which
can be taken from the source character (and then be modi-
fied for necessary variations) or can be provided by the user.

According to Equation 6, the open-loop control law for
these tasks is given by

_�des = J+1 _x1 + (I � J+1 J1)J
+

2 _x2; (19)

and the block diagram of its closed-loop version is shown
in Figure 3.

Since joint angle trajectories contain important charac-
teristics of a motion, and since the end-effector movements
are already tracked by the primary task, an obvious and use-
ful choice for the secondary task might be to imitate the
joint motion of the source character. i.e.

secondary task: �src = �des; (20)

which is simply the case when �src and the identity function
are used for x2 and f2, respectively, in Equation 18. Then
Equation 19 becomes

_�des = J+1 _x1 + (I � J+1 J1)
_�src: (21)

The block diagram of the closed-loop control scheme
with the secondary task of joint motion imitation is shown
in Figure 4.

Reasonable choices forK1 andK2 are I’s in discrete im-
plementation as stated before. But K1, K2 can be adjusted
based on the dexterity measure to get consistent motion near
the kinematic singularities. A popular dexterity measure is
�min=�max, where �min and �max are the minimum and
maximum, respectively, among the singular values of the
Jacobian. In this case, smaller K1 and K2 should be used if
the dexterity measure turns out to be small.

The adaptive scheme can be also useful if we apply the
OMR algorithm to motion transition. Smaller gain (e.g.
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K1 = K2 = 0:1I) will produce sluggish tracking, but
produces smooth motion. Therefore, if the animated model
switches to another motion and there exists a large discrep-
ancy at the motion boundary, smooth transition can be ob-
tained by adjusting the gain matrix K1 and K2 appropri-
ately.

As briefly mentioned before, K1 = I does not guarantee
stability since the non-linear function _� is linearly approxi-
mated by J+1 _x1. The system can become unstable when _x1
gets very large, or the sampling rate is very low. Therefore
another provision for enforcing stability might be to clamp
the value that goes into the box of J+1 in Figure 4 when-
ever it is over a certain threshold. The provision might be
effective when there is an excessively large acceleration, or
when the model is fully stretched and almost no manipula-
tive redundancy is left in the system. (In dealing with the
human motion, however, the above provision was almost
never needed.)

5. Motion Capture Data Enhancement

When we capture a motion, we often measure the joint
angles and use forward kinematics to reconstruct the mo-
tion. But the method can introduce large end-effector posi-
tion errors since the joint angle error near the base is ampli-
fied when it comes to the end-effector, and joint angle errors
are accumulated as the forward kinematic positioning prop-
agates toward the end-effector.

Choi et al’s interpolation/regression method [5], applies
inverse kinematics at sparse keyframes and the resulting
joint angles are interpolated with cubic spline curves. The
interpolation is combined with least square fitting so that the
characteristics of the original joint angle data is preserved in
the resulting motion.

The OMR algorithm described in the previous section
can be used to reduce measurement errors in restoring the
captured motion. The new method is an improvement

over the above interpolation/regression method in three as-
pects: (1) inverse kinematics is done at every frame, which
promises much closer end-effector tracking, (2) the joint
angle imitation is done by exploiting redundant degrees of
freedom rather than depending on the least square fit, and
(3) the high frequency component of the original motion is
preserved much better in the new method.

For the enhancement, we measure both joint angle and
end-effector trajectories during the motion capture session.
The measured trajectories are supplied to our motion retar-
getting algorithm: the end-effector trajectories are supplied
for x1, and the joint angle trajectories are supplied for �src.
Of course, the destination character has to be same with
the source character, if pure data enhancement needs to be
done. As the retargetting progresses, �src will be adjusted
to �des so that the end-effector constraint x1 is met while
maintaining the joint angle pattern of �src.

Compared to the forward kinematic motion reconstruc-
tion our OMR algorithm reduces end-effector errors re-
markably. In general, our algorithm also reduces the errors
in joint angle measurements. While the joint angle errors
can accumulate in forward kinematic reconstruction, once
it is processed by our OMR, the total amount of accumu-
lated error is limited by the amount of end-effector position
error. Moreover, the joint angle error due to the end-effector
position error is distributed among all the joints. Therefore
unless the amount of end-effector position error is exces-
sively larger than that of joint angle errors, our OMR pro-
duces more accurate result than the unprocessed data.

Note that the above does not mean the retargetting and
data enhancement should be done separately. If a differ-
ent destination character is used, the two things are actually
achieved at the same time. This is especially useful when a
real-time performance is retargetted.

6. Experiments

This section describes the results of two experiments.
In the first experiment, we show a retargetting example in
which our OMR is applied to retarget a walking motion, to
demonstrate that our OMR based on inverse rate control is
not inferior in the quality to the retargetting based on space-
time constraints. Major error analysis of the algorithm is
given in this example. In the second experiment, we show
the retargetting of bat-swing motion.

The motion clips mentioned below are available at
http://graphics.snu.ac.kr/demo/omr/omr.mov.

6.1. Retargetting of Walking Motion

In this experiment, the source motion (refer to the video
clip #1) is a curved path walking motion which was proce-
durally generated by Ko’s locomotion algorithm [8]. The
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walker took 13 steps and produced a total of 390 frames.
The kinematic structure of the characters used for walking
motion is shown in Figure 5.

Since the lower body motion is far more important than
the upper body motion in walking example, we retarget-
ted only the lower body motion. As shown in Figure 5 the
lower body consists of pelvis, upper leg, lower leg, foot,
and toes, and they are connected at the hip, knee, ankle, and
ball joints. The total degree of freedom of the lower body
is 8� 3 + 6 = 30. (All the joints were modeled by 3-DOF
joints, and the base has extra 6 DOFs.)

The destination character was about 60% scaled down
from the source character with non-uniform proportions.
They are shown in Figure 6, and the lower body dimensions
are compared in Table 1.

src character des character ratio

pelvis (width) 30.0 30.0 1.00
upper leg 46.0 26.0 0.57
lower leg 46.0 34.0 0.74

foot 16.0 16.0 1.00
toes 8.0 8.0 1.00

Table 1. Comparison of lower body dimen-
sions

In the retargetting, the secondary task was set to �src =
�des. To specify the primary task, we set the toe-tip of the
stance leg as the base and the toe-tip of the swing leg as

Figure 6. Characters used for walking mo-
tion (left: source character, right: destination
character)

the end-effector. The source character’s toe-tip trajectory
was used for x1 without any modification. Therefore the
destination character had to take relatively bigger steps con-
sidering his body size. At the boundaries of steps the base
and end-effector were switched. It implies that there can be
discontinuities at the boundary if the tracking error is large.
The retargetted motion with the above task set is shown in
the video clip #2. The tracking error of the swing foot was
negligible and thus the produced motion was smooth at the
step boundaries.

But the pelvis motion showed non-uniform speed along
the direction of progression (anterior-posterior), which
wasn’t observable in the source motion. So we constrained
the transverse plane motion of the pelvis. i.e. the pelvis was
designated as another end-effector, and the (x; z) compo-
nent of the source character’s pelvis movement was tracked
in the destination motion. (Note that the pelvis motion
along y-axis should be adapted to account for the height
difference). After adding the constraint, we could obtain a
satisfactory result as shown in the video clips #3 and #4.
Even with the extra constraints, the end-effector trajectories
of the source and the destination made an accurate match.
The comparison is shown in Figure 7. The dotted curves
for the source motion are not visible because they overlap
exactly with the solid curves, the end-effector trajectories of
the destination motion.

To show the tracking error microscopically, the area in-
dicated with a small box near the 150th frame in Figure 7



0 50 100 150 200 250 300 350
−200

−100

0

100

200

300

400

frame

cm

source

destination

left−toetip X

left−toetip Z

left−toetip Yleft−toetip Yleft−toetip Y

pelvis X

pelvis Zpelvis Zpelvis Z

Figure 7. Comparison of end-effector trajec-
tories

120 125 130 135 140 145 150
−10

−8

−6

−4

−2

0

2

4

6

8

10

frame

cm

Figure 8. Comparison of end-effector trajec-
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was magnified in Figure 8. The trajectories in the figure
show that the tracking error is kept small where the velocity
is nearly constant, but the error increases when the velocity
makes sudden changes. The maximum error (1.0464 cm)
occurred at the 128th frame where the y-coordinate (height)
of the toe-tip reached its peak acceleration and this error
was reduced to a negligible level at around the 135th frame
as the acceleration decreased. The step boundary was taken
from low-acceleration points so that the base to end-effector
switch makes a smooth transition.

The joint angle trajectories of the left leg during the orig-
inal and retargetted motion are plotted in Figure 10. Only
the angles around the sideways direction (medial-lateral)
axes are presented in the graphs. The comparison shows
that the amplitude of the hip angle is increased in the desti-
nation motion to cover the given step length with the rela-
tively smaller body. Other than that the original joint angle

Figure 9. Three characters used for retarget-
ting the bat swing motion

pattern was quite well preserved.3

At the end of every step, the ball joint of the source char-
acter showed an abrupt change from a large negative value
to zero. It corresponds to the toe-off moment when the toes
take off the ground. After the retargetting, the sharp corner
of the trajectory was well preserved. In general, our OMR
preserves the high frequency content of the motion quite
well, since inverse rate control is directed by Jacobian val-
ues. Big mountains or valleys are never missed. To recover
tiny fluctuations as well, however, a high sampling rate is
needed to avoid aliasing.

If the sharp corners are undesirable, they can be pre-
vented by adjusting the gain matrix K2 or clamping some of
the control input as stated in Section 4. The adjustment of
K2 does not affect the end-effector tracking performance.

6.2. Retargetting of Bat Swing Motion

In this experiment, actual performance of a bat swing
motion was processed by our OMR to produce the destina-
tion motion of three different characters shown in Figure 9.
The anthropometry of Character B is about the average.
Character A has a longer torso but shorter limbs than av-
erage, and Character C has a shorter torso but longer limbs.
Their kinematic structures are same as Figure 5 except that
the torso is segmented to 5 parts and the feet are excluded.

To set the primary task, the base and end-effectors should
be specified as before. In this experiment, the pelvis was
chosen as the base and two hands were chosen as the end-
effectors. Three 6-DOF sensors were used to capture those
positions and orientations. The end-effector motion was di-
rectly supplied for x1(t) without any modification. There-
fore Character A, for example, had to make a relatively

3Note that zero error in tracking the joint angle trajectories is unachiev-
able due to the anthropometric difference.
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Figure 10. Comparison of joint angle trajectories

lower swing.
Since all the torso segments can not be measured due to

the limited number of sensors, we measured only the top-
most segment. Therefore, the five joints from the waist to
the top-most torso segment had to be generated from the
orientation difference between the pelvis and the top-most
torso segment. For this, the measured orientation of the top-
most torso segment was added to the primary task, and zero
angles for the unmeasured joints were added to the sec-
ondary task, expecting the primary task can be met with
minimal joint angles along the torso.

The other sensors were used to measure the joint angles.
(Because we had only 13 sensors available, we had to give
up capturing the foot motion.) In this experiment only the
upper body motion was adapted by OMR. The lower body

motion was reconstructed by applying the measured joint
angles directly.

The retargetting of the source motion to Characters A,
B, C are shown in the video clips #5˜6, #7˜8, and #9˜10,
respectively. The small green boxes in the video indicate the
position of the end-effectors and base. In the video we can
observe that end-effector positions are accurately tracked.

Since the body dimensions of Character B and the real
performer are similar, the retargetted motion does not con-
tain any noticeable difference from the source motion. In
the case of Character A, however, we can see the waist is
bent to lower the hit position, and the torso is shifted for-
ward to account for the shorter arms. In the case of Charac-
ter C, the torso is bent backward and makes a bigger twist
to account for the longer arms and shorter torso. Snap shots



Figure 11. Snap shots taken from the retarget-
ted motion. Observe different adaptations to
compensate the anthropometric differences

walking bat swing

number of frames 390 136
total DOFs 30 42

constraint DOFs 8 9
elapsed time (sec) 1.219 0.984
frame rate� (Hz) 300.7 138.2

Table 2. Computational time spent for retar-
getting ( �The frame rate does not include the
time for visualization )

were taken during the retargetted motions to clearly demon-
strate the above adaptation for the anthropometric differ-
ences and shown in Figure 11.

6.3. Computational time

Since we had no privilege to install our program to the
platform equipped with a motion capture system, we had to
emulate the real-time motion capture. That is, the motion
data captured at 30Hz was fed to the OMR system with the
same sampling rate using a timer. At this sampling rate, not
a single frame was lost even with the visualization included.
We used an Intergraph GX1 system (dual P-III 550, wildcat
4000) for the experiments. Table 2 describes the compu-
tational time purely spent for the retargetting procedure in
each motion. The code was not fully optimized and so the
performance can be potentially improved further.

The slower rate of the bat swing motion is due to the
bigger size of the Jacobian matrix compared to the walking
motion (8�30 vs. 9�42). As shown in the table, the OMR
is fast enough to process motion capture data collected at a
usual sampling rate (30�90Hz) in real-time for the models
of reasonable complexity.

7. Discussion & Conclusion

This paper presented the on-line motion retargetting
technique based on inverse rate control. The method is an
improvement over the off-line retargetting based on space-
time constraints since real-time performances can be re-
targetted without degradation of retargetting quality. The
OMR technique greatly helps to get more satisfactory re-
sults in motion capturing with fewer trials by giving the
real-time feedback to the performer. Furthermore, the cap-
tured data are enhanced in both end-effector positions and
joint angles by going through our OMR filter.

One minor unsolved problem is that there is no easy
way to guarantee full-proof stability of the system due to
the non-linearity. We observed that at a very low sampling
rate, and if the model goes near the kinematic singularity
and thus very little manipulative redundancy is left, then the
system can became unstable. However, experiments proved
that the system never become unstable at 30Hz or higher
sampling rate. If the source motion is available only at a
low sampling rate, two remedies are recommended: (1) by
interpolating the source motion curves, first produce more
samples, and then use them as the input to the OMR filter,
or (2) scale down the end-effector trajectory to avoid the
singular configuration, or use both of (1) and (2).

The above remedies are for an excessively bad situation.
Our on-line motion retargetting produces satisfactory re-
sults in retargetting most human or creature motion. If the
technique is well utilized, it can be very useful to people in
character animation and game industries.
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