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Abstract—This paper proposes a real-time simulation technique for large deformations. Green’s nonlinear strain tensor accurately

models large deformations; however, time stepping of the resulting nonlinear system can be computationally expensive. Modal

analysis based on a linear strain tensor has been shown to be suitable for real-time simulation, but is accurate only for moderately

small deformations. In the present work, we identify the rotational component of an infinitesimal deformation and extend traditional

linear modal analysis to track that component. We then develop a procedure to integrate the small rotations occurring at the nodal

points. An interesting feature of our formulation is that it can implement both position and orientation constraints in a straightforward

manner. These constraints can be used to interactively manipulate the shape of a deformable solid by dragging/twisting a set of nodes.

Experiments show that the proposed technique runs in real-time, even for a complex model, and that it can simulate large bending and/

or twisting deformations with acceptable realism.

Index Terms—Physically-based modeling, physically-based animation, deformation, modal analysis.
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1 INTRODUCTION

EVERYTHING in this world deforms. In many objects or
creatures, deformation is such a conspicuous character-

istic that their synthetic versions look quite unnatural if the
deformation process is not properly simulated. Therefore,
modeling of deformation is an important aspect of
computer animation production. This paper presents a
physically-based technique for dynamic simulation of
deformable solids, attached to rigid supports and excited
by their rigid motions and/or external forces such as
gravity. The proposed technique makes a significant
improvement in simulation speed, while maintaining the
realism to a sufficient level, even for large deformations.

It is a well-established approach to model elastic solids
as continuums and solve their governing equations
numerically using finite element methods. When adopting
a continuum model, it is necessary to choose the measure of
strain that quantifies deformation. Green’s strain tensor,
which consists of linear terms and a nonlinear term, has
been a common choice for large deformations. Unfortu-
nately, time stepping of the resulting nonlinear system can
be computationally expensive, hampering its practical use
in animation production.

The computational load can be reduced remarkably by
employing modal analysis [19] based on a linear strain
tensor. In this technique, a set of deformation modes—a
small number of principal shapes that can span free
vibration of the elastic model—is identified and precom-
puted. Then, the problem of simulating deformation is
transformed to that of finding the weights of the modes,
which results in a significant reduction in computational

complexity. This technique can also synthesize geometri-
cally complex deformations with negligible main CPU costs
on programmable graphics hardware [10].

However, modal analysis can produce quite unnatural
results when applied to bending or twisting deformations
of relatively large magnitudes. In particular, the volume of
the deformed shape can increase unrealistically, as shown
in Fig. 4. These unnatural results are due to the omission of
the nonlinear term, which is not negligible for such
deformations. In this paper, we propose a new technique
that overcomes the above limitations of linear modal
analysis. As a result, the proposed technique generates
visually plausible shapes of elastodynamic solids under-
going large rotational deformations, while retaining its
computational stability and speed. Also, our formulation
provides a new capability for orientation constraints, which
has not been addressed in previous studies. The use of
position/orientation constraints can create interesting ani-
mations (Section 6), which would have been difficult if
orientation constraints were not provided.

The innovative aspect of our technique lies in the way of
handling rotational parts of deformation in the modal
analysis framework. To exploit the framework of linear
modal analysis, we omit the nonlinear term during the initial
setup, which corresponds to precomputing the modal
vibration modes at the rest state. When the simulation is
run, however, we keep track of the local rotations that occur
during the deformation, based on the infinitesimal rotation
tensor. Then, at each time step, we warp the precomputed
modal basis in accordancewith the local rotations of themesh
nodes. The rest of themethod is basically the same as in linear
modal analysis. The above bookkeeping operations—track-
ing local rotations and warping the modal basis—require
only a small amount of extra computation. Therefore, as in
[10], our method can simulate dynamic deformations in real-
time by employing programmable graphics hardware, but
with an extended coverage of deformations.
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2 RELATED WORK

Since the pioneering work of Terzopoulos et al. [24], much
effort has been devoted to simulating the motion of
deformable objects. Past studies in this area have had two
central aims: to speed up the simulation and/or increase the
realism of the result. A comprehensive survey of this subject
can be found in computer graphics literature [6] and
mechanics literature [1], [26].

The speed and realism of simulations, which usually
trade off each other, are heavily dependent on how the
nonlinearities are handled. If realism is important, Green’s
quadratic strain tensor could be used, which produces
realistic results even for large deformations. However, time
stepping of the resulting nonlinear system can be compu-
tationally expensive. Several methods have been proposed
to reduce the computational load of this approach. Lumped
mass approximation diagonalizes the mass matrix so that
its inverse can be computed efficiently. Further reduction of
the computation time can be achieved by employing
adaptive methods based on a multigrid solver [23],
nonnested overlapping layers of unstructured meshes [3],
subdivision of the control lattice [2], or refinement of basis
functions [7]. However, the speed-up achieved by those
methods is limited because they must still deal with the
inherent problems resulting from the nonlinearities.

The computation time can be greatly reduced by adopting
themodal analysis of linear elastodynamics, which omits the
nonlinear term. Since Pentland and Williams [19] first
introduced this technique to the computer graphics commu-
nity, it has been used for modeling the dynamic movements
of trees in turbulent wind [22] and for generating sounds
corresponding to the behavior of deformable objects [18]. In
particular, James andPai [10] showed that the deformation of
human skin excited by rigid bodymotion can be generated in
real-time on programmable graphics hardware. They also
proposed an output-sensitive technique for collision detec-
tions among reduced deformable models [11]. Hauser et al.
[8] addressed the manipulation constraints and combined
modal analysis with rigid body simulation to deal with free-
floating deformable objects. Although modal analysis sig-
nificantly accelerates the simulation, it generates noticeable
artifacts when applied to large deformations due to the
linearization. Here, we propose a technique that eliminates
the linearization artifacts while retaining the efficiency of the
modal analysis.

The linearization artifacts observed in simulations based
on linear modal analysis arise in large part because linear
modal analysis does not account for rotational deformations.
Terzopoulos andWitkin [25] introduced a frame of reference
andmodeled thedeformation relative to that reference frame.
Since simulations using the reference frame capture the
rotational part of the deformation, they can handle large
rotational motions of deformable solids. However, large
deformations within the solid are also susceptible to the
linearization artifact. To realistically animate articulated
deformable characters, Capell et al. [2] developed a method
in which the character is first divided into overlapping
regions, then each region is simulated separately, and, finally,
the results are blended. For nonlinear quasistatic deforma-
tions of articulated characters, Kry et al. [12] introduced a

modal displacement model equipped with a continuously
articulated coordinate system.

To address large relative rotational deformations within
a single object, Müller et al. [14] proposed the stiffness
warping method that tracks the rotation of each node and
warps the stiffness matrix. Our method is similar to their
approach in that rotations are handled separately to reduce
the linearization artifacts. The intrinsic difference is that,
whereas the stiffness warping method is formulated in the
original space, our method is formulated in the modal
space. This results in a significant speed up in both
simulation and visualization by 1) solving decoupled,
reduced system of linear equations and 2) utilizing
programmable graphics hardware for vertex updates of
large models. However, unlike the corotational methods [4],
[5], [15] that employ element-wise rotation, both Müller
et al.’s work [14] and our work are based on nodewise
rotation of the stiffness matrix and thus can produce a
spurious ghost force when applied to a free-floating
deformable object. Currently, our work is focused on a
deformable object attached to a rigid support, thus the ghost
force effects are suppressed by the constraint force.

Recently, James and Fatahalian [9] proposed data-driven
tabulation of the state space dynamics and dimensional
model reduction of the deformed shapes to simulate large
deformations at an interactive speed with visually realistic
results. Because the tabulation could not be performed for
all possible system responses, they confined user interac-
tions to certain types of movements. They reported that the
precomputation for the dinosaur model shown in Fig. 10
took about 30 hours. In comparison, our method is
formulated by adding simple extensions to linear modal
analysis. As a consequence, it does not entail long
precomputation times nor does it restrict the types of user
interactions. However, self-collisions and global scene
illumination cannot be precomputed in our method, which
was possible in [9].

3 ROTATIONAL PART IN A SMALL DEFORMATION

The nonlinear term in the strain tensor is responsible for the
appearance and disappearance of rotational deformations.
However, because the strain tensor used in the present
work does not include the nonlinear term, a straightforward
modal analysis will not generate such phenomena and will,
therefore, give rise to visual artifacts for large deformations.

Even though a linear strain tensor does not properly
model the rotational deformation, fortunately, investigating
the kinematics of deformation provides a clue to lessen such
an inability; in fact, it has been generally known that every
infinitesimal deformation can be decomposed into a
rotation followed by a strain [21]. This finding forms the
basis of the technique proposed here. Specifically, at every
time step of the deformation simulation, we first identify
the (small) rotations occurring over the material points and
then integrate the effects of those rotations to obtain the
deformed shape.

This section commences with an investigation of the
kinematics of infinitesimal deformation to show how such
deformations can be decomposed into a strain and a
rotation. This analysis is entirely based on the mechanics
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literature [21]. We then show how this decomposition can

be used to extend modal analysis so that it keeps track of

rotations, while still retaining the basic framework of modal

analysis. The method for integrating the effects of rotations

will be presented in the next section.

3.1 Kinematics of Infinitesimal Deformation

Before introducing the decomposition of infinitesimal

deformations, we first define the necessary notations.

Suppose that x 2 IR3 denotes the position of a material

point of an elastic solid in the undeformed state, which

moves to a new position aðxÞ due to a subsequent

deformation. To focus on the displacements caused by the

deformation, we make use of the displacement field,

u : IR3 ! IR3, such that

aðxÞ ¼ xþ uðxÞ; x 2 �;

where � is the domain of the solid. Then, differentiating

both sides of the above equation with respect to x gives a

differential relation that gives the position to which a

material point neighboring x will be mapped by the

deformation:

da ¼ ðIþruÞdx; ð1Þ

where ru is the Jacobian of u. We are interested in

decomposing ru.
The infinitesimal strain tensor ", which measures the

change in the squared length of dx during an infinitesimal

deformation (i.e., kruk � 1), is defined by

" ¼4 1

2
ðruþruTÞ:

Noting that 1
2 ðruþruTÞ is a meaningful quantity, we can

decompose ru as

ru ¼ 1

2
ðruþruTÞ þ 1

2
ðru�ruTÞ ¼4 "þ !: ð2Þ

Interestingly, the skew-symmetric tensor ! is closely related

to the curl of the displacement field, r� u. In fact, ! can be

rewritten as

! ¼ 1

2
ðru�ruTÞ ¼ 1

2
ðr � uÞ � ¼4 w�; ð3Þ

where z� denotes the standard skew symmetric matrix of

vector z. Therefore, w ¼4 1
2 ðr � uÞ can be viewed as a

rotation vector that causes rotation of the material points at

and near x by angle � ¼ kwk about the unit axis

ŵw ¼ w=kwk. ! is called the infinitesimal rotation tensor.
By substituting (2) and (3) into (1), we obtain

da ¼ dxþ "dx|{z}
strain

þ �ŵw� dx|fflfflfflfflffl{zfflfflfflfflffl}
rotation

;

which shows that an infinitesimal deformation consists of a

strain and a rotation. This decomposition, illustrated in

Fig. 1, has the practical benefit that, for small deformations,

it is possible to keep track of the rotation of each material

point by calculating the curl of the displacement field,

w ¼ 1
2r� u.

3.2 Extended Modal Analysis

This section presents how we extend the conventional
modal analysis so that it keeps track of the rotation
experienced by each material point during deformation.
First, we present a brief introductory description of modal
analysis and finite element methods; detailed explanations
of these techniques can be found in texts such as [20], [26].

The governing equation for a finite element model is

M€uuþC _uuþKu ¼ F; ð4Þ

where uðtÞ is a 3n-dimensional vector that represents the
displacements of the n nodes from their original positions,
and FðtÞ is a vector that represents the external forces acting
on the nodes. The mass, damping, and stiffness matrices M,
C, and K are independent of time and are completely
characterized at the rest state, under the commonly adopted
assumption (Rayleigh damping) that C ¼ �Mþ �K, where �
and � are scalar weighting factors.

3.2.1 Modal Displacement

In general, M and K are not diagonal and, thus, (4) is a
coupled system of ordinary differential equations (ODEs).
Let � and a diagonal matrix � be the solution matrices of
the generalized eigenvalue problem, K� ¼ M��, such that
�TM� ¼ I and �TK� ¼ �. Since the columns of � form a
basis of the 3n-dimensional space, u can be expressed as a
linear combination of the columns:

uðtÞ ¼ �qðtÞ: ð5Þ

Here, � is the modal displacement matrix of which the ith
column represents the ith mode shape and qðtÞ is a vector
containing the corresponding modal amplitudes as its
components. By examining the eigenvalues, we can take
only dominant m columns of �, significantly reducing the
amount of computation. In the following, � denotes the
3n�m submatrix formed by the above procedure.

Substitution of (5) into (4) followed by a premultiplica-
tion of �T decouples (4) as

Mq€qqþCq _qqþKqq ¼ �TF; ð6Þ

where Mq ¼ I, Cq ¼ ð�Iþ ��Þ, and Kq ¼ � are now all
diagonal. �TF is called the modal force. The above
decoupling allows the motion components due to indivi-
dual modes to be computed independently and combined
by linear superposition.

3.2.2 Modal Rotation

We now develop a procedure to represent the rotational
part, wðtÞ, in terms of qðtÞ. wðtÞ is a 3n-dimensional vector
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formed by concatenating all of the three-dimensional

rotation vectors, each of which is formed by taking the curl

of the displacement field u at each node, as described in

Section 3.1.
For simplicity, we use linear tetrahedral elements in (4).

Let ue;j (j 2 ½1; 4�) be the vertex displacement of a tetra-

hedron �e and let ue ¼ ½uT
e;1juT

e;2juT
e;3juT

e;4�
T. Then, the

displacement of material point x 2 �e is given by

uðxÞ ¼ HeðxÞue, where HeðxÞ is the linear shape function

of the element. Substituting this into (3) yields the rotation

vector for x:

weðxÞ ¼
1

2
ðr�ÞHeðxÞue ¼4 Weue: ð7Þ

Note that, because HeðxÞ is a linear function of x, We is

constant and, thus, weðxÞ is uniform over �e. For the

rotation vector of a node, we use the average of the rotation

vectors of all the tetrahedra sharing the node.
Based on the above discussion, we can now assembleWe

of all the elements to form the global matrix W such that

WuðtÞ gives the composite vector wðtÞ that we are looking

for.1 Finally, expanding uðtÞ with (5) gives

wðtÞ ¼ W�qðtÞ ¼4 �qðtÞ: ð8Þ

Both W and � are characterized by the deformable mesh at

the rest state and are thus constant over time. Therefore, we

can precompute �. Equation (8) shows that, as in the

displacement (5), we can represent the rotational component

of deformation in terms of qðtÞ. We call � the modal rotation

matrix. It should be noted that both of the modal matrices are

meaningful only for moderately small deformations.

4 INTEGRATION oF ROTATIONAL PARTS

Equation (8) provides an efficient way to keep track of the

rotations occurring at each node over time. However, such

rotations are not yet reflected in the calculation of the

displacement field uðtÞ. Therefore, simulations based on (5),

(6), and (8) in Section 3.2 will not produce proper rotational

deformations. In this section, we develop a method to

integrate the effect of the rotational part into the calculation

of uðtÞ.
To accommodate large deformations, the stiffness matrix

K in (4) should be replaced by KðuÞ. Therefore, we must

deal with a governing equation of the form:

M€uuþC _uuþKðuÞu ¼ F: ð9Þ

Let uðtÞ ¼ ½uiðtÞ� ¼ ½uT
1 ðtÞ � � �uT

n ðtÞ�
T. Then, the ith three-

dimensional vector uiðtÞ represents the displacement of the

ith node from its original position, measured in the global

coordinate frame. In order to measure the local rotations

with respect to the global coordinate frame, we embed a

local coordinate frame fig at each node i, as shown in Fig. 2,

such that, at the initial state, it is aligned with the global

coordinate frame. We use the notation figðtÞ to refer to the

local coordinate frame at time t.

Let RiðtÞ be the rotation matrix representing the

orientation of figðtÞ and _uuL
i ðtÞdt be the differential dis-

placement of the ith node at time t� dt measured from

figðt� dtÞ. Then, the finite displacement uiðtÞ measured

from the global coordinate frame is given by

uiðtÞ ¼
Z t

0

Rið�Þ _uuL
i ð�Þd�: ð10Þ

The above procedure must be carried out for every node.

Therefore, we form the block-diagonal matrix R ¼ ½�ijRi�,
where 1 � i; j � n and �ij is the Kronecker delta. Then,

n equations with the form of (10) can be assembled into a

single equation,

uðtÞ ¼
Z t

0

Rð�Þ _uuLð�Þd�: ð11Þ

This equation shows how the effect of the rotations

occurring at the nodal points can be accumulated. The

remainder of this section describes the procedure used to

compute the above integration.

4.1 Modal Analysis in Local Coordinate Frames

Equation (11) tells us that, instead of solving (9) for u, we

need to convert the equation into a form that can be solved

for uL. By premultiplying both sides of (9) with RT, we

obtain

RT
�
M€uuþC _uuþKðuÞu

�
¼ RTF: ð12Þ

The following two assumptions must then be made to

convert (12) to the form shown in (16).

Assumption 1 (Commutativity in Fine Meshes). We assume

that the mesh being simulated is sufficiently fine that the

approximation,

RTM � MRT; ð13Þ

is valid.

The error associated with the above approximation is

related to the orientational differences between neighboring

local coordinate frames. To prove that this error decreases

as the orientational differences decrease, we need to

examine the structure of M. For the simple case where M

is a lumped diagonal mass matrix, the approximation error

is zero regardless of R. The proof for the general case is

given in Appendix A. Experimental results showed that the

approximation error did not significantly impact the visual

realism of the simulation, even for coarse meshes.
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Differentiating both sides of (11) with respect to time, we

obtain €uu ¼ R€uuL þ _RR _uuL. Therefore,

RTM€uu � MRT€uu ¼ M€uuL þMRT _RR _uuL; ð14Þ

where MRT _RR _uuL is the Coriolis force resulting from the

rotational movements of the local coordinate frames. If the

rotational movements occur at a moderate rate, the Coriolis

force is negligible compared to gravity. Thus, we omit the

Coriolis force in the subsequent formulation.2

Assumption 2 (Warped Stiffness). We assume that the

nonlinear elastic forces can be approximated by

KðuÞu � RKuL , RTKðuÞu � KuL; ð15Þ

which measures linear elastic forces in the local coordinate

frames, but resolves them in the global coordinate frame.

The above assumption is similar to the stiffness warping

proposed in [14], where KðuÞu � RKðRTa� xÞ. Unlike

element-based rotation of elastic forces [4], [15], node-based

rotation can yield a nonzero total momentum of elastic

forces and, thus, a spurious ghost force on a free-floating

deformable object. However, the effects of such a ghost

force are suppressed by the constraint force acting on a

rigid support.
Now, we are ready to approximate (12) by a linear

equation for modal analysis in the local coordinate frames.

Substituting (14) and (15) into (12), we obtain

M€uuL þC _uuL þKuL ¼ RTF; ð16Þ

where we use the proportional damping C ¼ �Mþ �K.

This linear elastodynamic equation for uL is the same as (4),

except that the external force acting on each node needs to

be prerotated in accordance with its local coordinate frame.

Therefore, it is straightforward to reduce (16) into a set of

decoupled ODEs. The modal displacement matrix �

obtained in Section 3.2 gives the relationship

uLðtÞ ¼ �qðtÞ; ð17Þ

where we use the notation qðtÞ instead of qLðtÞ for the sake

of readability. Based on this relationship, we can replace uL

in (16) with �qðtÞ and, after premultiplying both sides of

the same equation with �T, we obtain

Mq€qqþCq _qqþKqq ¼ �T
�
RTF

�
: ð18Þ

The above decoupled ODEs can be solved numerically

using semi-implicit integration.3 By manipulating (18), we

obtain the following expressions of qk ¼ qðtkÞ and
_qqk ¼ _qqðtkÞ:

qk ¼ �qk�1 þ � _qqk�1 þ �
�
Rk�1�

�T
Fk�1;

_qqk ¼ h�1
��
�� I

�
qk�1 þ � _qqk�1 þ �

�
Rk�1�

�T
Fk�1

�
;

ð19Þ

where �, �, and � are diagonal matrices, the ith components
of which are, respectively,

�i ¼ 1� h2ki
di

; �i ¼ h 1� hci þ h2ki
di

� �
; �i ¼

h2

di
;

in which h is the time step size, di ¼ mi þ hci þ h2ki with
mi, ci, and ki representing the diagonal entries of Mq, Cq,
and Kq, respectively.

4.2 Formulation of Modal Warping

We now need to evaluate (11) for the finite displacement uk

at the time step k. When a straightforward numerical
integration is employed, accumulation of the numerical
errors can give rise to a hysteresis effect such that the
deformable solid does not return to the initial state even
after all the external forces disappear.

To circumvent such a hysteresis effect, we analytically
evaluate (11) by taking a quasistatic approach that ramps
qðtÞ from 0 to qk at each time step k. That is, we use

qðtÞ ¼ t

tk
qk; 0 � t � tk: ð20Þ

Then, the history of wðtÞ, which determines that of RðtÞ, is
also represented as a linear function.

wðtÞ ¼ t

tk
�qk; 0 � t � tk: ð21Þ

Now, RðtÞ can be obtained by simply converting wðtÞ into
the 3n� 3n block-diagonal rotation matrix. Finally, we
exploit _uuLðtÞ ¼ � _qqðtÞ from (17) and _qqðtÞ ¼ 1

tk
qk from (20) to

analytically evaluate (11) as follows:

uk ¼
Z tk

0

RðtÞ� _qqðtÞdt ¼ ~RRk�qk; ð22Þ

where ~RRk ¼4 1
tk

R tk

0 RðtÞdt. The procedure for computing ~RRk

is given in Appendix B.
The above equation implies a new deformation scheme;

~��k ¼4 ~RRk� can be regarded as a warped version of the
original modal basis �. The columns of ~��k give the mode
shapes at the time step k, in which rotations occurred at the
nodal points have been accumulated. Fig. 3 shows the
evolution of three selected mode shapes over time for the
case of a bar. The new method works basically in the same
way as linear modal analysis, except that it uses a warped
modal basis instead of a fixed linear modal basis.

5 MANIPULATION CONSTRAINTS

Thus far, we have discussed the dynamics of an uncon-
strained elastic body. Motivated by the work of Hauser et al.
[8] on positional constraints in a linear modal analysis
setting, we extend our deformation scheme to cope with
manipulation constraints that allow, for example, drag-
ging/twisting of some nodes to certain positions and/or
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[10] or the closed form solution given in [8]. Finally, we note that all these
approaches have the same time complexity becausem equations are already
decoupled.
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orientations (see Fig. 7). We formulate these manipulation
constraints as hard constraints. Constraints for velocity and
acceleration can be developed in a similar way. Note that
orientation constraints for a deformable body have not been
addressed in previous studies. Such constraints are possible
in our formulation because it explicitly takes into account
the mean orientation of each node, based on the infinitesi-
mal strain tensor analysis.

5.1 Position Constraints

Let 	 be the number of constrained points and let uk
c be the

3	-dimensional vector consisting of the desired displace-
ments of the constrained nodes at a time step k. Then, the
constraint equation can be written as

uk
c ¼ ~��k

cq
k
c ¼ ~RRk

c�cq
k
c ; ð23Þ

where qk
c is the unknown modal amplitude vector, �c is the

3	�m matrix obtained from � by taking only the rows for
the constrained nodes, and ~RRk

c is the 3	� 3	 block-diagonal
matrix obtained from ~RRk by taking only the part corre-
sponding to the constrained nodes.4 Let the 3n-dimensional
vector �FFk�1 represent the unknown constraint force
measured in the global coordinate frame. Then, qk

c should
satisfy not only (23), but also (19) when this additional force
is applied. That is,

qk
c ¼ �qk�1 þ � _qqk�1 þ �

�
Rk�1�

�T�
Fk�1 þ �FFk�1

�
¼4 qk

u þ �
�
Rk�1�

�T �FFk�1;
ð24Þ

where qk
u ¼4 �qk�1 þ � _qqk�1 þ �ðRk�1�ÞTFk�1 is the modal

amplitude vector for the unconstrained case, i.e., qk in (19).
The forces do not need to be exerted only at the

constrained nodes because exerting forces at some uncon-
strained nodes can still cause the constrained nodes to be
positioned at the specified locations. We will refer to the
nodes at which forces are exerted as exercised nodes. When
we directly drag a set of nodes, for example, the exercised
nodes are identical to the constrained nodes. In general,
however, they can be different.

Let 
 be the number of exercised nodes. In �FFk�1, the
portion corresponding to the unexercised nodes should be
zero. Let Fk�1

x be the 3
-dimensional vector consisting only
of the constraint forces acting on the exercised nodes, which
can be obtained by removing the three-dimensional vectors
corresponding to the unexercised nodes from �FFk�1. Then,
we can rewrite (24) in terms of Fk�1

x ,

qk
c ¼ qk

u þ �
�
Rk�1

x �x

�T
Fk�1

x ; ð25Þ

where �x is the 3
�m matrix obtained from � by taking
only the rows for the exercised nodes and the 3
� 3
 block-
diagonal matrix Rk�1

x is obtained from Rk�1 by taking only
the part corresponding to the exercised nodes. Finally,
substituting (25) into (23) and manipulating the resulting
expression, we obtain the equation for the constraint force:

Fk�1
x ¼ Rk�1

x Ay
pbp; ð26Þ

where Ap ¼ ~RRk
c�c��

T
x , bp ¼ uk

c � ~RRk
c�cq

k
u and ð�Þy denotes

the pseudoinverse of a matrix. This constraint force can now
be applied to the exercised nodes through (25) to yield the
desired modal amplitude vector.

We now examine the computational complexity of (26).
Since Ap is time-dependent, the pseudoinverse of Ap must
be computed at every time step. Fortunately, we can
decompose Ap into time-dependent and time-independent
parts, namely, Ap ¼ ð ~RRk

cÞð�c��
T
x Þ, making it possible to

compute its pseudoinverse using Ay
p ¼ ð�c��

T
x Þ

yð ~RRk
cÞ

�1.
The first part of Ay

p is time-independent and, hence, can
be precomputed at the constraint initiation stage. The
second part is time dependent and, therefore, must be
computed at runtime; however, this entails only a small
computational load because ~RRk

c is ð3� 3Þ-diagonal.

5.2 Orientation Constraints

Orientation constraints can be implemented in a similar
way to the position constrains. Let � be the number of
constrained nodes and let the 3�-dimensional vector wk

c

represent the desired rotations of the constrained nodes at a
time step k. Then, the constraint equation can be written as

wk
c ¼ �cq

k
c ; ð27Þ

where qk
c is the unknown modal amplitude vector and �c is

the 3� �m matrix obtained from the modal rotation
matrix � by taking only the rows corresponding to the
constrained nodes. Then, as in the position constraint case,
qk
c should simultaneously satisfy (25) and (27). By manip-

ulating these two equations, we obtain the equation for the
constraint force:
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4. We note that the content of ~RRk ( ~RRk
c is its submatrix) used in this section

may differ from that of ~RRk appearing in (22) since extra movements may

need to be incurred to realize the constraints. We propose three ways of

treating the problem: 1) Employ the Newton-Rhapson method, 2) approx-

imate ~RRk
c from ~RRk of (22), or 3) use a slightly less accurate version of (22),

i.e., uk ¼ ~RRk�1�qk. Each of these methods has its drawbacks; method 1) can

require longer computation times, method 2) can potentially cause

oscillations, and method 3) can make the simulation off-phase by one time

step. We found method 2) to be a reasonable choice because, during

experiments, no noticeable oscillations have been observed.

Fig. 3. Evolution of mode shapes in linear modal analysis (top row) and modal warping (bottom row); each box shows snapshots taken at three

different amplitudes.
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Fk�1
x ¼ Rk�1

x Ay
obo; ð28Þ

where Ao ¼ �c��
T
x and bo ¼ wk

c ��cq
k
u. Unlike the posi-

tion constraint case, Ao is time-invariant so its pseudoin-
verse can be precomputed at the constraint initiation stage.
Finally, we can apply the above constraint force to the
exercised nodes through (25) to obtain the desired modal
amplitude vector.

5.3 Mixed Constraints

When one set of nodes is position-constrained and another
(not necessarily disjoint) set is orientation-constrained, the
constraint force should simultaneously satisfy both types of
constraint. A simple approach would be to use an
augmented formulation that combines (26) and (28):

Fk�1
x ¼ Rk�1

x

Ap

Ao

� 	y
bp

bo

� 	
:

However, this approach does not allow precomputation of
the pseudoinverse because ½AT

p AT
o �

T is time-dependent.
To isolate the precomputable part, we employ a task-

priority approach [16] in which the position constraints are
regarded as the primary task and the orientation constraints
as the secondary task (or vice versa, depending on the
situation). Letting f p ¼ Ay

pbp, the constraint force can be
written as

Fk�1
x ¼ Rk�1

x

n
fp þ

�
AoðI�Ay

pApÞ
�y�

bo �Aofp
�o

; ð29Þ

which causes the solution satisfying the position constraints
to be found first and then the solution optimally satisfying
the orientation constraints is searched for within the null
space of the position constraints. Note that Ay

pAp is time-
independent because the time-dependent parts cancel each
other and, hence,

�
AoðI�Ay

pApÞ
�y

can be precomputed.
Consequently, the only nontrivial computation remaining
in the calculation of (29) is to compute the inverse of ~RRk

c ,
which appears in f p ¼ Ay

pbp ¼ ð�c��
T
c Þ

yð ~RRk
cÞ

�1bp.

5.4 Static Position Constraints

In the above description of manipulation constraints, every
positional or rotational displacement is measured relative to
the frameof reference [25],whichwas introduced inSection 2.
The static position constraints, which make a set of nodes fixed
at the initial locations with respect to the frame of reference,
are not implemented in terms of the manipulation con-
straints. Constraints of this type are realized by simply
omitting the corresponding DOFs in the governing equation
and setting the displacements to zero.

6 EXPERIMENTAL RESULTS

Our deformation scheme is implemented as an Alias
MAYA plugin for a Microsoft Windows XP environment
and also as a stand alone application to exploit program-
mable graphics hardware through nVIDIA Cg and Micro-
soft DirectX API. Tetrahedral meshes were generated using
the public domain software NETGEN. To obtain the
m dominant eigenvalues of large sparse square matrices
and the corresponding eigenvectors, we used the MATLAB
built-in C++ math function eigs, which is based on the
ARPACK [13] eigenvalue solver. All experiments were
performed on a PC with an Intel Pentium 4 3.2GHz
processor, 1GB memory, and an nVIDIA GeForce FX 5900
Ultra 256MB graphics card. We used the time step size of
h ¼ 1=30 second in all experiments reported in this section.
Model statistics and performance data are summarized in
Table 1. Animation clips are available at http://graphics.
snu.ac.kr/~mgchoi/modal_warping.

6.1 Comparison to Other Methods

This experiment is to compare the results generated by
linear modal analysis, modal warping, and nonlinear FEM.
We ran the three methods to deform a long bar under
different gravities. As for the nonlinear FEM [17], we
employed explicit integration and used the time step size
h ¼ 0:001 seconds for numerical stabilities. Fig. 4 shows the
snapshots taken at the equilibrium states of the bar.

Fig. 5a shows the plot of the relative L2 displacement field
error versus gravitational magnitude. We took the result
produced by nonlinear FEMas the ground truth. The relative
error in modal warping is smaller than that in linear modal
analysis, although it increases as the gravitationalmagnitude
increases. Fig. 5b is theplot of the relativevolumechangewith
respect to the initial volume. It shows that the relative volume
change in modal warping is almost identical to that in
nonlinear FEM. Even though Fig. 5a shows modal warping
produces nonnegligibleL2 displacement field errors, it was
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TABLE 1
Model Statistics and Performance Data

Fig. 4. A bar deformed by modal analysis (red), by modal warping (blue),

and by nonlinear FEM (green) under gravity of different magnitudes.
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not easy to visually discriminate between the results

produced by modal warping and nonlinear FEM unless

the results were seen overlayed. However, the effects due

to the volume changes were clearly noticeable.
We also conducted a dynamic analysis while the bar

makes free vibration. We applied the gravity (of different

magnitudes as in the above experiments) during only the

first 0.1 seconds of the simulation. Fig. 6a shows the plot of

the relative L2 displacement field error summed over space

and time. Fig. 6b is the time-series plot of the average

magnitude of nodal displacements in the case of gravita-

tional magnitude 9:8m=s2, in which we can observe a subtle

difference in the frequency of oscillation. It is interesting to

note that, if measured relative to the error of linear modal

analysis, the error of modal warping in the dynamic

analysis (Fig. 6a) is larger than that in the static analysis

(Fig. 5a). It results from the aforementioned difference in the

frequency of oscillation.

6.2 Manipulation Test

This experiment demonstrates the manipulation capability

of our technique. Fig. 7 shows, from left to right, the

resultant deformations in the cases of only position

constraints, only orientation constraints, and both position

and orientation constraints. For the case of position

constraints, the constrained node was identical to the

exercised node. For the case of orientation constraints,

however, the set of exercised nodes had to be extended to

include nodes neighboring the constrained node.

6.3 Constraint-Driven Animation

To demonstrate how the manipulation constraints can be
used to animate deformable parts of a character, we
simulated a character whose only deformable part was its
potbellied torso (Fig. 8a). As the character made a dance
motion, the potbelly made a dynamic passive deformation,
excited by the gross motion of the character, as in [10]. All
the mesh nodes contained in the rigid pelvis at the initial
setup were static position constrained and, thus, their
movement coincided with that of the pelvis. As shown in
Fig. 8b, the deformable solid is attached to the skeleton by
two position constraints (the yellow spheres) and one
position/orientation constraint (the RGB axes).

6.4 Constraint-Based Motion Retargeting

The manipulation constraints can also be used to retarget a
motion of an articulated character to that of a deformable
character. To demonstrate this, we consider two examples. In
the first example, a jumping motion of an articulated
character is retargeted to a jelly box, as shown in Fig. 9a. As
in the character considered above, the nodes contained in the
pelvis are static position constrained. The motion of the jelly
box is driven by the movements of the feet and head of the
articulated character; to implement this, a node correspond-
ing to the middle of the two feet is selected and position/
orientation-constrained to follow the average movement of
the feet and a node corresponding to the forehead is also
position/orientation-constrained to follow the movement of
the head. Three snapshots taken during this experiment are
shown in Fig. 9a. For comparison, we also applied the
traditional modal analysis to this case (see Fig. 9b).

In the second example, we applied a dance motion to the
flubber shown in Fig. 9c. Because this character has a more
articulated shape than that in the previous example, more
constraints are required to properly map between the
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Fig. 5. Error analysis of the bar shown in Fig. 4: (a) The relative
L2 displacement field error and (b) the relative volume change with
respect to the initial volume.

Fig. 6. Error analysis of free vibration: (a) The relative L2 displacement

field error summed over space and time and (b) the average magnitude

of nodal displacements over time.

Fig. 7. A bar manipulated with a position constraint (left), an orientation

constraint (middle), and a position/orientation constraint (right). The

position constraints are represented by yellow spheres and the

orientation constraints are represented by RGB axes.

Fig. 8. Constraint-driven animation of a character with one deformable

part (the torso).

Authorized licensed use limited to: Seoul National University. Downloaded on January 18,2024 at 05:06:03 UTC from IEEE Xplore.  Restrictions apply. 



articulated and deformable characters. We placed one
position/orientation constraint at the head and five position
constraints at the torso, elbows, and feet (see Fig. 9d). For
the flubber, we used a larger number of deformation modes
(64 modes) than in the experiments described above; this
was necessary to accommodate the wider range of shape
variations due to the increased number of constraints.

6.5 Simulation of Large Models

When the modal warping technique is applied to a large
model, such as the dinosaur model shown in Fig. 10,
simulating the deformation is not the bottleneck; surpris-
ingly, the dynamic update of the vertex coordinates for
display is the slowest procedure. To achieve real-time
simulation of the model, we employed programmable
graphics hardware as in [10]. The main CPU is devoted to
simulating the deformable model. The GPU updates each
vertex using both the modal amplitude vector supplied
from the CPU and the per-vertex data residing in the video
memory of the graphics hardware. In our implementation,
the per-vertex data consists of the initial position of the
vertex along with an additional 2m three-dimensional
vectors for the modal displacements and rotations of the
vertex. Unlike [10], our method does not require any special
considerations on vertex normal corrections because the
per-vertex rotation vector is explicitly available to the vertex
program (see Appendix C). However, our vertex program
requires extra instructions for converting the rotation vector
into the rotation matrix. Given the ever-increasing capabil-
ities of graphics hardware technology, we expect that
hardware restrictions on the number of instructions will
soon be lifted.

To test our approach on a large model, we applied our
hardware implementation to the rubber dinosaur model
previously used by James and Fatahalian [9]. The mesh for
finite element modeling consists of 5,484 tetrahedral
elements and 1,883 nodal points, and the mesh for the final
display consists of 56,192 faces and 28,098 vertices. The total

precomputation time for the finite element method and the

modal analysis was less than 2 seconds, and the simulation,

including the display, ran at about 100 fps. The result was

quite realistic, even for cases involving large deformations.

Using our method, the types of interactions allowed during

runtime did not need to be restricted; for example, the tail of

the dinosaur could be manipulated interactively.

7 CONCLUSION

Thepresentwork extends traditional linearmodal analysis to

create a novel deformation technique that combines the

merits of this type of analysis, in particular its ability to give

real-time performance [19], [10], with the ability to accom-

modate large rotational deformations. An interesting feature

of our technique is that it supports both position and

orientation constraints and, hence, could be used for

interactively manipulating the shape of a deformable solid.

The constraints can also be used for some less obvious but

very useful purposes, such as to model articulated deform-

able characters or to drive a keyframe animation such that the

animator controls the movement of only a few constrained

points, then the technique generates the movement of all the

nodal points.We expect the deformation technique proposed

here will prove useful in many application areas, including

computer games and character animation.
A shortcoming of our method is that, although it

adequately accounts for the rotational component, it does

not preserve the volume. Therefore, deformations involving

a large degree of stretching or compression may generate

noticeable artifacts. Another shortcoming of our method is

that, even when animating a single undamped mode, the

vibration frequency is constant independent of the motion.

These behaviors are obvious consequences of using a strain

tensor consisting of only linear terms. More accurate

modeling of such deformations would require the use of a

nonlinear strain tensor.
Further research is needed to address another limitation

of our technique. Currently, our technique supports only

constrained deformable objects attached to rigid supports.

We plan to extend our work for free-floating deformable

objects in the future by combining the modal warping

framework with rigid body simulation, as Hauser et al. [8]

did for free-floating objects that undergo moderately small

deformations. Collision detection and response among

deformable solids and their surrounding environment

could also be handled as in [8].
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Fig. 9. Constraint-based motion retargeting.

Fig. 10. Dynamic deformation and manipulation of a dinosaur.

Authorized licensed use limited to: Seoul National University. Downloaded on January 18,2024 at 05:06:03 UTC from IEEE Xplore.  Restrictions apply. 



APPENDIX A

ANALYSIS OF (13)

The mass matrix, assembled from linear tetrahedral

elements, can be written as M ¼
�
mijI

�
for 1 � i; j � n,

where I is the 3� 3 identity matrix, and mij is nonzero if

and only if the ith and jth nodes are connected in the mesh.

Remembering that R ¼ ½�ijRi�, we can expand the approx-

imation error as

RTM�MRT ¼
�
�ijR

T
i

��
mijI

�
�
�
mijI

��
�ijR

T
i

�
¼

�
mijR

T
i

�
�
�
mijR

T
j

�
¼

�
mijðRi �RjÞT

�
:

Here, the error in each block is dependent on the

orientational difference and, thus, it decreases with increas-

ing mesh resolution. As one refines the mesh, the number of

nonzero blocks also increases. However, this increase is

cancelled out by the decrease of mij because the total massP
mij is independent of the mesh resolution. Therefore, the

matrix norm of the approximation error decreases with

increasing mesh resolution.
To assess the approximation error, we prepared three

meshes of different resolutions for the same long bar:

11� 3� 3, 19� 4� 4, and 21� 5� 5. Fig. 11 shows the

approximation error kRTM�MRTk with respect to the

total mass of the deformable body. Even with the coarsest

mesh, the error is within 0.37 percent of the total mass.

APPENDIX B

COMPUTATION OF (22)

To compute ~RRk in (22), we first convert the rotation vector

wiðtÞ of each node into the rotation matrixRðwiðtÞÞ. For this
conversion, we employ Rodrigues’ formula [21] that

expresses the rotation matrix in terms of the angle and the

unit axis of rotation. Let wk
i be the ith three-dimensional

vector of �qk. Then, wiðtÞ ¼ �wk
i , where � ¼ t=tk. Rodri-

gues’ formula gives

Rð�wk
i Þ ¼ Iþ ðŵwk

i�Þ sin k�wk
i k þ ðŵwk

i�Þ2ð1� cos k�wk
i kÞ;

where ŵwk
i ¼ wk

i =kwk
i k. Now, we integrate both sides of this

equation from � ¼ 0 to 1. Then, ~RRk
i ¼

4 R 1
0 Rð�wk

i Þd� is givenby

~RRk
i ¼ Iþ ðŵwk

i�Þ 1� cos kwk
i k

kwk
i k

þ ðŵwk
i�Þ2 1� sin kwk

i k
kwk

i k

� �� 	
:

Finally, the composite block-diagonal rotation matrix for

wk ¼ ½wk
i � can be constructed by ~RRk ¼ ½�ij ~RRk

i �.

APPENDIX C

VERTEX PROGRAM IN CG

// float3 phi# is the #-th modal displacement.

// float3 psi# is the #-th modal rotation.

// uniform float4 q contains 4 modal amplitudes.

float3 u = phi1*q.x+phi2*q.y+phi3*q.z+

phi4*q.w;

float3 w = psi1*q.x+psi2*q.y+psi3*q.z+

psi4*q.w;

// Coefficients for Rodrigues’ formula

float w_len = length(w);

float3 w_hat = normalize(w);

float s, c; sincos(w_len, s, c);

float c1 = (1-c)/w_len;

float c2 = 1 - s/w_len;

// Position correction: \tidle{R}(w) * u

float3 P = position + u;

P = P + cross(w_hat,u)*c1

+ cross(w_hat,cross(w_hat,u))*c2;

// Normal correction: R(w) * N

float3 N = normal;

N = N + cross(w_hat,N)*s

+ cross(w_hat,cross(w_hat,N))*(1-c);
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