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Derivative Particles for Simulating Detailed
Movements of Fluids

Oh-young Song, Doyub Kim, and Hyeong-Seok Ko

Abstract— We present a new fluid simulation technique
that significantly reduces the non-physical dissipation of
velocity. The proposed method is based on an apt use
of particles and derivative information. We note that a
major source of numerical dissipation in the conventional
Navier–Stokes equations solver lies in the advection step.
Hence, starting with the conventional grid-based simulator,
when the details of fluid movements need to be simulated,
we replace the advection part with a particle simulator.
When swapping between the grid-based and particle-based
simulators, the physical quantities such as the level set and
velocity must be converted. For this purpose, we develop
a novel dissipation-suppressing conversion procedure that
utilizes the derivative information stored in the particles
as well as in the grid points. For the fluid regions where
such details are not needed, the advection is simulated
using an octree-based constrained interpolation profile
(CIP) solver, which we develop in this work. Through
several experiments, we show that the proposed technique
can reproduce the detailed movements of high-Reynolds-
number fluids, such as droplets/bubbles, thin water sheets,
and whirlpools. The increased accuracy in the advection,
which forms the basis of the proposed technique, can also
be used to produce better results in larger scale fluid
simulations.

Index Terms— physically based modeling, multiphase
fluid, high-Reynolds-number fluid, water

I. INTRODUCTION

WHEN water interacts violently with solids,
air, or water itself, it takes on a variety

of structures, including droplets/bubbles, thin water
sheets, and whirlpools, as shown in Figure 1. Such
features can appear when fluids undergo motions
characterized by high Reynolds numbers, where the
Reynolds number represents the relative magnitude
of the inertia compared to the viscosity of the
fluid. Fast-moving water is a typical high-Reynolds-
number fluid. This paper explores the physically-
based simulation of such phenomena.
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Assuming that the Navier–Stokes equations cor-
rectly model the physical movements of fluids, a
plausible simulation should be able to reproduce
the high-Reynolds-number behaviors of water.1 To
date, however, these phenomena have not been satis-
factory reproduced. This paper identifies the factors
underlying this failure, and proposes a method that
allows realistic simulation of high-Reynolds-number
liquid motions.

Implausible simulation of high-Reynolds-number
fluids is related to numerical dissipation. Specifi-
cally, discretized simulation of the Navier–Stokes
equations inevitably calls for evaluating physical
quantities at non-grid points. In most methods, such
values are calculated by interpolating the values of
the physical quantities at the grid points. However,
the error introduced by this approximation acts like
nonphysical viscosity or numerical dissipation. This
dissipation can be reduced by using a finer grid;
however, increasing the grid resolution may increase
the computation time and memory requirements to
impractical levels. Over the last few years, several
elegant techniques have been proposed to address
this issue. Bringing in particles into the Eulerian
scheme can help capture the inertial movement of
fluids, and increases the effective resolution of the
simulation. Enright et al. [1] introduced the particle
level set method, which increases the accuracy of
surface tracking by spreading particles around the
interface. Losasso et al. [2] proposed an octree-
based multi-level fluid solver that allows finer-
resolution simulations in more interesting regions
such as water surfaces.

Unfortunately, the above techniques cannot pro-
duce high-Reynolds-number liquids with sufficient
detail and realism. The simulated fluid appears
more viscous than in real physics; the fluids often
look thick/sticky, and the movements of small-scale

1Although the present work focuses on water, it can apply to any
fluid.
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Fig. 1. Detailed movements of water when a ball makes an impact into the water. The sequence was produced by the method proposed in
this paper. 192× 128× 128 effective resolution was used.

features that are typically observed in complex flows
do not appear. We find that the reason the above
dissipation-suppressing techniques produce this sort
of artifacts is because they cannot effectively sup-
press the velocity-dissipation, even though they re-
duce the mass-dissipation remarkably.

In this paper we introduce a new concept called
derivative particles, and develop a fluid simulator
based on that concept. We take advantage of the
non-dissipative nature of the Lagrangian scheme
for the simulation of the advection part; for fluid
regions where details need to be simulated, we
solve the advection step using particles. Switching
between the grid-based and particle-based simula-
tors can introduce numerical dissipation. This paper
develops a new conversion procedure that allows
the reproduction of detailed fluid movements. One
innovative aspect of this work is that, in addition to
storing the physical quantities (velocity and level set
value), the derivative particles also store the spatial
derivatives of those quantities, which enables more
accurate evaluation of the physical quantities at non-
grid/non-particle positions. The use of particles in
the present work differs from the particle level set
method [1] in that the derivative particles carry fluid
velocities as well as level set values.

Experiments show that the proposed simulator
tracks interfaces accurately. More interestingly, the
proposed method turns out to reduce nonphysical
damping to a remarkable extent, allowing reproduc-
tion of the magnificent movements of small scale
features that occur in real high-Reynolds-number

fluids.
The remainder of the paper is organized as fol-

lows: Section II reviews previous work; Section III
gives an overview of the simulator; Section IV
presents the octree-based constrained interpolation
profile (CIP) solver; Section V presents the deriva-
tive particle model; Section VI reports our experi-
mental results; and Section VII concludes the paper.

II. PREVIOUS WORK

Since Foster and Metaxas [3], [4] first intro-
duced fluid animation techniques based on full 3D
Navier–Stokes simulation, the approach has spread
widely among the computer graphics community.
Jos Stam [5] introduced a stable fluid solver known
as Stable Fluids. The advection step of this solver
was implemented using a semi-Lagrangian method
[6], which remains stable even when large time
steps are used. Since then, there have been active
developments of fast fluid animation techniques in
computer graphics, based on the semi-Lagrangian
method. Rasmussen et al. [7] proposed a technique
to produce 3D large-scale animations of gases using
a 2D semi-Lagrangian solver, and Feldman et al. [8]
proposed an explosion model that incorporates a
particle-based combustion model into the Stable
Fluids solver. Treuille et al. [9], [10] introduced
an optimization technique that generates the fluid
flows that meet specified keyframe constraints. In
addition, Feldman et al. proposed the use of a
hybrid grid that combines a staggered grid and an
unstructured grid [11], and also proposed the use
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of a deformable grid [12], for which they had to
modify the semi-Lagrangian method.

In order to simulate liquids, a model for tracking
the liquid surfaces is needed in addition to a stable
Navier–Stokes solver. For this purpose, Foster and
Fediw [13] proposed a hybrid surface model in
which massless particles are introduced to the level
set field. This model motivated the development of
the particle level set method [1], which can cap-
ture the dynamic movements of fluid surfaces with
remarkable accuracy. Enright et al. [14] demon-
strated that the particle level set method allows
the use of large time steps in the semi-Lagrangian
framework. The method has been employed to
model the interactions between fluids and rigid
bodies [15] and between fluids and deformable thin-
shell objects [16], as well as to animate viscoelastic
fluids [17], sand [18], multi-phase fluids [19], and
water drops [20].

As an alternative to the grid-based approaches,
purely particle-based methods have also been stud-
ied. Stam and Fiume [21] used smoothed particle
hydrodynamics (SPH) to model gaseous phenom-
ena. In SPH, the fluid is represented by a collection
of particles, and the simulator calculates movements
of them by accounting for each term of the Navier–
Stokes equations. Müller et al. [22] used the SPH
model for simulating liquids, and in [23], they use
the technique for simulating multi-phase fluid inter-
actions. Premože et al. [24] introduced the moving
particle semi-implicit (MPS) method to the graphics
community, a technique that shows better perfor-
mance than SPH in simulating the incompressible
movements of fluids. These purely particle-based
approaches are suited for simulating unrestricted
domains. However, surface reconstruction can be
complicated in these approaches compared to the
grid-based method.

A primary factor that impairs the visual realism
(and also the physical accuracy) of simulated re-
sults is the numerical dissipation of the velocity
field. To reduce the dissipation when simulating
gaseous phenomena, Fedkiw et al. [25] used cubic
interpolation. They also included an additional step
referred to as vorticity confinement that amplifies the
curl of the velocity field, producing realistic swirly
components in smoke movements. More physically-
based prevention of the vorticity dissipation was
done [26], [27] by employing the the vortex particle
method. This method works with the curl version of

the Navier–Stokes equations and utilizes particles to
solve the advection term, which results in effective
preservation of the vorticities. In the case of liquids,
however, viscosity plays a more prominent role; in
particular, swirly movements are short-lived and less
frequently observed. Thus, modeling the behavior of
high-Reynolds-number liquids requires a velocity-
dissipation suppression technique that works in
more general situations. To reduce dissipation in
liquid simulations, Kim et al. [28] proposed an
advection technique using Back and Forth Error
Compensation and Correction [29], which provides
second-order accuracy in both space and time.
Song et al. [30] proposed a technique based on
the CIP advection method. Their technique solves
the velocity advection with third-order accuracy.
However, the numerical viscosity that is coming
from the grid-based advection cannot be avoided
by this approach. Zhu and Bridson [18] proposed
a fluid simulation technique based on the FLuid-
Implicit-Particle (FLIP) method. The FLIP method
[31] solves the advection step with particles, but
all other steps with the grid. Although the particle
advection in this method is free from numerical
dissipation, interpolation errors are introduced when
the velocity values are transferred back and forth
between the grid and particles.

III. OVERVIEW

In the development of a multi-phase fluid solver,
we assume that both air and water are incompress-
ible. The Navier–Stokes equations for incompress-
ible fluids can be written as

∂u

∂t
= −(u · ∇)u− ∇p

ρ
+∇ · (µ∇u) +

f

ρ
, (1)

∇ · u = 0, (2)

where u is the velocity, p is the pressure, f is the
external force, µ is the viscosity coefficient, and ρ
is the fluid density. For accurate modeling of the
discontinuity in the density and viscosity across
the interface between the media, we employ the
ghost fluid method with variable density [19], [32],
[33]. In our solver, surface tracking is based on the
level set method. The level set field φ is updated
according to

∂φ

∂t
+ u · ∇φ = 0 (3)
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Fig. 2. Architecture of the simulator

with signed-distance condition

|∇φ| = 1. (4)

For the time-integration of the Navier–Stokes equa-
tions, we employ the fractional step method [5]
which incrementally accounts for the effects of the
terms in Equation (1) and the mass conservation
condition in Equation (2). The technique we develop
here focuses on the enhancement of the advection
part. Hence we group the fractional steps into two
parts, the non-advection part and the advection
part, as shown in Figure 2. The time-integration of
Equation (3) involves only the advection part.

The advection part consists of the grid advection
part and the particle advection part. The grid ad-
vection part advects the velocity and level set fields
calculated from the non-advection part according
to the current velocity field. Our approach differs
from pure Eulerian simulation in that our simulator
includes the particle advection part, which is used to
simulate regions where details need to be produced.
For that purpose, we introduce a number of particles
in the neighborhood of the air-water interface.2

In the grid advection part, Advect Velocity and
Advect Level Set are Eulerian advection steps.
Accurate handling of these steps forms the basis
of successful simulation of high-Reynolds-number
behaviors. For the Eulerian advection, we develop
an octree-based CIP solver (Section IV) that reduces

2The band was three-cells thick in each side of the interface; for
2D simulations we put 16 particles per cell, and for 3D simulations
we put 32.

both velocity and mass dissipation to a remarkable
level.

When the advection of a fluid region needs to
be simulated using the particle advection part, the
physical quantities (e.g., the level set and velocity)
that are currently defined on the grid are transferred
to the particles. After this transfer, the particles can
be advected straightforwardly. The results of the
particle advection are then transferred back to the
grid. At this point in the procedure, the final velocity
and level set values are stored on the grid points,
regardless of whether the simulation proceeded via
the grid advection part or particle advection part. We
present the grid-to-particle and particle-to-grid ve-
locity/level set conversion procedures in Section V.
Use of the particle-based advection and develop-
ment of the conversion procedures are essential for
reproducing the details of fluid movements.

IV. DEVELOPING THE OCTREE-BASED CIP
SOLVER

This section describes the development of the grid
advection part of the simulator by combining the
CIP method with the octree data structure.

A. Introduction to the CIP method
In solving the Navier–Stokes equations with the

fractional step method (Section III), the advection
terms u · ∇u and u · ∇φ require special attention
due to their hyperbolic nature. The semi-Lagrangian
method provides a stable framework to simulate
the above hyperbolic equations [5]. Unfortunately,
this method suffers from severe numerical diffusion
arising from the linear interpolation, which is used
to determine the physical quantities at the back-
tracked non-grid point from those at neighboring
grid points.

Meanwhile, the CIP method is a third-order tech-
nique originally proposed by Yabe and Aoki [34],
[35] and subsequently improved by Yabe et al. [36].
The key idea of this method is to advect not
only the physical quantities but their derivatives as
well. Here, a question would be how to advect the
derivatives. An interesting observation of Yabe and
Aoki [34] was that the equation for advecting deriv-
atives can be obtained directly from the original
hyperbolic equation

∂φ

∂t
+ u · ∇φ = 0, (5)
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where φ is the physical quantity that is being
advected. Differentiating Equation (5) with respect
to the spatial variable x, we obtain

∂φx

∂t
+ u · ∇φx = −ux · ∇φ, (6)

which can be used to predict the evolution of φx

over time. In solving Equation (6), once again
we employ the fractional step method: first, we
solve the non-advection part ∂φx/∂t = −ux · ∇φ
using finite differencing; then we advect the result
according to

∂φx

∂t
+ u · ∇φx = 0. (7)

A detailed introduction to CIP advection can be
found in [30]. The extension of the above approach
to two- and three-dimensional cases is presented in
[35]. Song et al. [30] found that the generalization
given in [35] can lead to instabilities, and proposed
a modification that fixes this problem.

In the present work, for solving the advection
part, we employ the CIP method with 2nd-order
Runge-Kutta time integration.

B. Combining CIP with Adaptive Octree Grids

The use of adaptive grids based on an octree
data structure, which was introduced by Losasso
et al. [2], allows simulations to be performed with
inhomogeneous accuracy throughout the fluid. This
approach is useful from a practical standpoint, since
it allows more interesting regions such as surfaces
to be simulated with higher accuracy by introduc-
ing small amounts of additional computation and
memory. Here we adopt this octree data structure,
and propose that the practical value of this adaptive
approach can be further improved by combining it
with the CIP method.

Losasso et al. [2] use linear interpolation for the
semi-Lagrangian advection step. If, however, we re-
place the linear interpolation with CIP-interpolation,
the advection will have third-order accuracy. As in
Guendelman et al. [16], we sample the pressure
value at the cell center, but sample all other quanti-
ties – velocity, level set, and their derivatives – at the
nodes. When a cell is refined, the values at the new
grid points are CIP-interpolated by referring to all
the derivative values. Our octree coarsening/refining
is identical to the procedure presented in [2].

We note that the CIP method fits very well with
the octree data structure because, although it has
third order spatial accuracy, it is defined over a
single grid cell stencil rather than over multiple
stencils. Due to this compactness, we can use the
CIP method for simulating adaptive grids without
any major modification. By contrast, extension of
the method from first-order to third-order would be
difficult for higher-order schemes that are defined
over multiple stencils: as the simulation adaptively
refines the grid, cells with different sizes will be
produced, which makes the development of multi-
stencil-higher-order schemes problematic.

We would also note a feature that we refer to
as the octree artifact. Regional variations in the
grid resolution of the octree data structure pro-
duce variations in the amount of dissipation. Re-
gional variations in the mass dissipation may not
be visually noticeable. For the velocity dissipation,
however, the regional differences can be noticeable,
especially for rapid fluid motions. In the simulation
of breaking-dam, for example, water undergoes fast
lateral movements. The fluid near the surface, where
the resolution is high, experiences small amounts
of numerical diffusion and thus makes swift move-
ments. The fluid at the bottom, by contrast, moves in
a manner characteristic of a more viscous fluid due
to the low grid resolution. When these two types of
motion appear together, the upper part of the water
appears to be crawling over the lower part. Higher
order schemes, including CIP, are not free from
this kind of artifact. However, the artifact is less
noticeable when the advection is simulated using
the octree-based CIP solver proposed in the present
work; we attribute this improvement to an overall
reduction in numerical dissipation, especially in the
low-resolution regions.

V. DERIVATIVE PARTICLE MODEL

In the aspect of momentum/mass conservation,
the particle-based Lagrangian scheme is more ac-
curate than the grid-based Eulerian scheme. Hence,
we apply the Lagrangian scheme to the regions that
need to be simulated in greater detail. However,
this approach has its own limitations in regard to
surface tracking and pressure/viscosity calculation.
Therefore we apply the approach only to the sim-
ulation of the advection part; all other parts of
the simulation are based on the Eulerian scheme.
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Switching between the Lagrangian and Eulerian
schemes requires grid-to-particle and particle-to-
grid conversion of the physical quantities (velocity
and level set values). The procedures for performing
these conversions should be carefully developed so
that they do not introduce unnecessary numerical
diffusion. In this section we present novel conver-
sion procedures that do not impair the desirable
characteristics of the Lagrangian advection, which
is an essential component enabling the reproduction
of the small scale features in high-Reynolds-number
fluids. For simplicity, the description of this section
is done for 2D.

A. Grid-to-Particle Velocity Conversion

At the end of the non-advection part shown in
Figure 2, (1) the velocities that need to be advected
are stored at the grid points, and (2) a number of
particles are scattered over the grid. The particle
advection part must find out the velocities of the
particles so that their velocities and level set values
make Lagrangian movements. Suppose that a parti-
cle P is in the cell defined by four grid points G1,
G2, G3, and G4. Let uG

i = (uG
i , vG

i ) be the grid
velocities at Gi for i ∈ {1, 2, 3, 4}. We are looking
for the formula that can be used for the velocity
uP = (uP , vP ) of P.

One possible approach, which was used in the
particle-in-cell method [37], would be to use the
bi-linear interpolation uP =

∑4
i=1 wiu

G
i , where wi

are the bi-linear weights determined based on the
particle position P. Unfortunately, this conversion
introduces severe numerical diffusion. In the FLIP
method [31], only the incremental parts of the grid
velocities are transferred to the particle velocity.
Namely, uP = uP

− +
∑4

i=1 wi∆uG
i , where uP

− is
the particle velocity just before the commencement
of the non-advection part and ∆uG

i is the velocity
change at Gi due to the non-advection part. This
approach has been shown to reduce numerical diffu-
sion conspicuously [18]. Hence, in the development
of the grid-to-particle velocity conversion proce-
dure, we use the FLIP approach, but with monotonic
CIP interpolation [30] instead of linear interpola-
tion. This not only gives uP but also ( ∂

∂x
uP , ∂

∂y
uP )

and ( ∂
∂x

vP , ∂
∂y

vP ).

(    ,    )

u

u

u
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Fig. 3. Calculation of the grid velocity from the particle velocities

B. Particle-to-Grid Velocity Conversion

Suppose that each particle has moved according
to the velocity uP , carrying the spatial derivatives
of the velocity as well as the velocity itself. We
must now develop a procedure to transfer the con-
sequences of the particle advections to the grid.
The particle-to-grid velocity conversion is more
complicated than the grid-to-particle conversion.

Referring to Figure 3, let G be a grid point. From
each quadrant of G we select the nearest particle,
namely, P1, P2, P3, and P4. Let uP

i = (uP
i , vP

i ) be
the velocity of Pi, and let (uP

ix, u
P
iy) and (vP

ix, v
P
iy) be

the derivatives of the x- and y-components of uP
i ,

respectively. We must find formulae for the velocity
uG = (uG, vG) at G and its spatial derivatives.
Because the four particles are not rectangularly
located, we cannot use conventional grid-based CIP
interpolation.

Our particle-to-grid velocity conversion is com-
posed of the following steps. For simplicity, we only
show the calculation of the x-components.

(1) We coordinate-transform the derivative
(uP

1x, u
P
1y) of uP

1 into (u1‖, u1⊥), so that u1‖
represents the component along the direction−−−→
P1P2 and u1⊥ represents the component
perpendicular to

−−−→
P1P2. Similarly, we

obtain the coordinate-transformed derivative
(u2‖, u2⊥) of uP

2 .
(2) On the results obtained in Step (1), we per-

form one-dimensional monotonic CIP inter-
polation along the direction

−−−→
P1P2 in order to

calculate uA and its
−−−→
P1P2-directional deriv-

ative (uA‖, uA⊥) at the location A. uA⊥ is
just linearly interpolated because it is the
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component perpendicular to
−−−→
P1P2.3

(3) We obtain (uAx, uAy) from (uA‖, uA⊥) by ap-
plying the inverse of the above coordinate-
transformation.

(4) Similarly, we perform Steps (1)∼(3) for the
particles P3 and P4 to calculate uB and
(uBx, uBy) of B.

(5) On the results obtained in Steps (3) and
(4), we perform y-directional monotonic CIP
interpolation, which gives the velocity and
derivative at G.

This monotonic interpolation method can be
straightforwardly extended to the 3D case. We note
that the present work does not employ general radial
basis interpolation schemes because (1) they do not
exploit the derivative information, and (2) modify-
ing the schemes so that they reflect the derivatives
while they maintaining the monotonicity turns out
to be difficult.

Preserving monotonicity is a necessity condition
for stable simulation. As described in Sections IV
and V, particle-to-grid conversion, grid-to-particle
conversion, and octree-based CIP, all these com-
ponents are monotonic. Therefore, the derivative
particle model is stable. We did not run into any
instability in performing the experiments shown in
Section VI.

C. The Level Set Conversion
The level set conversion should be performed

differently from the velocity conversion; level set
values represent the minimum distances to the sur-
face, so the conversion should not be based on
interpolation. Here we use a modified version of
a widely used level set conversion procedure [1],
[39]; the new conversion turns out to produce more
accurate results.

In the original particle level set method, a spher-
ical implicit function φ(x) = sp(|φp| − |x− xp|) is
used to calculate the level set value at grid point
x, where φp is the level set of the particle, and
sp = +1 (−1) for the positive (negative) particles. In
the present work, utilizing the derivative information
stored in the derivative particle, we calculate the
level set and its derivative at the grid point with

φ(x) = φp +
∇φp

|∇φp| · (x− xp) (8)

3 [38] states that such kind of linear interpolation does not critically
disgrade the overall accuracy of the algorithm.

t = 0.1 sec t = 1.0 sec t = 1.2 sec

Fig. 4. Snapshots taken from 2D breaking-dam simulation: the
upper and the lower sequences show the results produced from the
traditional linear model with the particle level set method and the
derivative particle model, respectively.

∇φ(x) = ∇φp (9)

where ∇φp is the gradient carried by the derivative
particle. Because Equation (8) is based on the
gradient-directional distance rather than the Euclid-
ean distance, it produces more accurate results than
the spherical implicit function. Except for the above
modifications, the conversion procedure is identical
to the one presented in Enright et al. [39].

VI. EXPERIMENTAL RESULTS

The technique presented in this paper was imple-
mented on a Power Mac with Dual G5 2.5 GHz
processors and 5.5 GB of memory. We used the
program to simulate several experimental situations
that produce high-Reynolds-number fluid behaviors
in the real world. In the experiments, we used the
following constants: g = −9.8 m/sec2, ρwater =
1000 kg/m3, µwater = 1.137 × 10−3 kg/ms, ρair =
1.226 kg/m3, and µair = 1.78× 10−5 kg/ms, where
g is gravity. In all experiments, we restricted the
simulation time step under the CFL number 3.
Extraction of water surface was done using the
marching cube algorithm, and rendering was done
by mental ray R©.

a) Breaking-dam: In order to compare the
numerical damping between the derivative particle
model and the linear model with the particle level
set method, we performed 2D breaking-dam test
with 1282 effective resolution, in which 0.2× 0.4m
water column was released in the gravity field.
Figure 4 shows the results. We can see that deriva-
tive particles produce less diffusive result: breaking
of the wave is sharper and vorticities are well
conserved.
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Fig. 5. Snapshots taken from the water drop simulation: the top left
and top right images show the results produced from the traditional
linear model with the particle level set method and the CIP method,
respectively. The bottom image shows the result from the derivative
particle model.

b) A Chunk of Water Dropping onto Shallow
Water: Figure 5 shows a snapshot taken from the
simulation in which a chunk of water is dropped
onto a 0.05-m deep water reservoir. We used the
no-slip boundary condition for the bottom surface
of the reservoir, which caused the water to move
fast at the top but slow at the bottom, resulting in a
crown-like splash. This experiment was performed
with an effective grid resolution of 2563. The same
scene was also simulated with the traditional linear
model that uses the particle level set method and
with the grid-based CIP method. The comparison
demonstrates that the proposed technique produces
a more realistic result. The derivative particle model
took 60 sec per time-step in average, the linear
model took 30 sec, and the CIP method took 48
sec. all including the file output time.

c) Impact of a Solid Ball: In this experiment,
a solid ball with radius 0.15 m makes an impact into
water, with the velocity (5.0,−3.0, 0.0) m/sec. The
impact generates complex structures shown in Fig-
ure 1. This experiment manifests that the proposed
technique can produce detailed fluid movements
and surface features that occur in violent solid-
water-air interactions. The effective resolution of

Fig. 6. A snapshot taken from the simulation of a rotating water
tank.

this experiment was 192× 128× 128.
d) Rotating Water Tank: Figure 6 shows a

0.9×0.9×0.3 m rotating box with half-full of water.
In the experiments, the centrifugal force creates the
effect of pushing the water to the side of the tank.
This simulation was performed with an effective
grid resolution of 96 × 96 × 32. This experiment
demonstrates that the derivative particle model can
simulate complex movements of fluids even in a
coarse-resolution grid.

A. Velocity-Dissipation Suppression Test

To test the performance of the derivative particle
model in regard to velocity-dissipation suppression,
we performed the experiment described below. For
the comparison, we also performed the same ex-
periment with the FLIP method. We set up a 2D
1m × 1m square box with 642 uniform grids. We
initially set the grid velocities to the incompressible
velocity field defined by the stream function [40]

ψ =
1

π
sin2(πx)sin2(πy). (10)

The velocities of the particles were obtained with
the method described in Section V-A. After advect-
ing the particles and converting particle velocities to
grid velocities, we projected the velocities in order
to maintain incompressibility. The above procedure
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Fig. 7. 2D vorticity preservation test at t = 5 sec. The left
and the right columns are the results from the FLIP method and
the derivative particle model, respectively. The top images show
the particles’ position, and the bottom images show the particles’
velocity. The length of the red lines are proportional to the magnitude
of the particles’ velocities.

was repeated for every time step. The same number
of particles were used for both FLIP and derivative
particle experiments. We didn’t perform any particle
reseeding step. Fig 7 compares the results; the
images in the left column are from FLIP and the
images in the right column are from derivative
particles model. FLIP generated a hole in which no
particle exists at t = 0.9 sec, and the hole expanded
afterwards. In the bottom-row images of Fig 7, we
can clearly see that the velocity damping of the
derivative particles model is smaller than that of
the FLIP. We used Zhu and Bridson’s code4 for the
FLIP simulation.

B. Volume Conservation Test

To see the mass conservation performance of
the proposed derivative particle level set conver-
sion(Equation (8) and (9)), we performed 3D in-
compressible spiral field test [39]. A sphere of
radius 0.15 is set initially at (0.35, 0.35, 0.35). The
velocity field is adopted from [39]. The effective
resolution is 2563 grid cells. For the comparison,
the same test was done also with the particle level

4http://www.cs.ubc.ca/˜rbridson/

Fig. 8. Snap shots from 3D incompressible spiraling field test at
0.52T . The top left and bottom left images show the results from
the particle level set method and the proposed derivative particle
level set conversion, respectively. The images in the right column
are magnifications of a rectangular part in those experiments.

set method. Figure 8 shows the results. When the
sphere was maximally stretched, the particle level
set method has lost 4.454% of the initial volume
while the derivative particle level set conversion
has lost 3.151% of the initial volume. After one
complete revolution, the particle level set method
has lost 7.460%, while the proposed method has
lost 3.447%.

VII. CONCLUSION

In this paper, we have introduced a new concept
called the derivative particle, and proposed a fluid
simulation technique that increases the accuracy
of the advection part. The non-advection part of
the simulator is implemented using the Eulerian
scheme, whereas the advection part is implemented
using the Lagrangian scheme. A nontrivial problem
in developing simulators that combine schemes in
this way is how to convert physical quantities at
the switching of the advection and non-advection
parts. We successfully overcame this problem by
developing conversion procedures that effectively
suppress unnecessary numerical dissipation. In the
fluid regions where the particle advection does not
need to be performed, the advection is simulated us-
ing an octree-based CIP solver, which we developed
in this work by combining CIP interpolation with
the octree data structure. This approach also served
to reduce numerical dissipation. The results of sev-
eral experiments demonstrated that the proposed



IEEE TRANSACTIONS OF VISUALIZATION AND COMPUTER GRAPHICS 10

technique significantly reduces velocity dissipation,
leading to realistic reproduction of dynamic fluids.

The present work would not have been possible
without the pioneering work of previous researchers.
The idea of entirely using particles to solve the ad-
vection part came from the PIC [37] and FLIP [31]
methods, but for the particle-to-grid and grid-to-
particle velocity conversion we used derivative-
based cubic interpolation instead of the linear inter-
polation. In addition, the notion of letting the parti-
cles carry the level set values came from the particle
level set method [1]. This model was extended in
the present work so that particles also carry the
velocity information. Moreover, utilizing the deriv-
ative information came from the CIP method [36].
Here we extended the application of this method
to particles, which entailed the development of a
particle-to-grid velocity conversion procedure that
contained an extension of the CIP method itself: the
CIP interpolation of the particles in non-rectangular
configurations.

In the experiments, the ability of reproducing the
details was emphasized. But the proposed technique
can also apply to large scale fluid movements to
produce accurate results. The technique involves
increased amount of memory for storing the deriv-
ative information. However, we demonstrated that a
2563 grid can be simulated on a contemporary PC,
which is already a viable resolution for portraying
interesting fluid scenes.
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[6] A. Staniforth and J. Côtè, “Semi-lagrangian integration scheme
for atmospheric model - a review,” Mon. Weather Rev., vol. 119,
no. 12, pp. 2206–2223, 1991.

[7] N. Rasmussen, D. Q. Nguyen, W. Geiger, and R. Fedkiw,
“Smoke simulation for large scale phenomena,” ACM Trans-
actions on Graphics, vol. 22, no. 3, pp. 703–707, 2003.

[8] B. E. Feldman, J. F. O’Brien, and O. Arikan, “Animating
suspended particle explosions,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 708–715, 2003.

[9] A. Treuille, A. McNamara, Z. Popović, and J. Stam, “Keyframe
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