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Abstract

This paper presents a new method for editing an existing
motion to satisfy a set of user-specified constraints, and in
doing so guaranteeing the kinematic and dynamic sound-
ness of the transformed motion. We cast the motion editing
problem as a constrained state estimation problem based
on the per-frame Kalman filter framework. To handle var-
ious kinds of kinematic and dynamic constraints in a scal-
able fashion, we develop a new algorithm called spacetime
sweeping, which sweeps through the frames with two con-
secutive filters. The unscented Kalman (UK) filter estimates
an optimal pose for the current frame that conforms to the
given constraints, and feeds the result to the least-squares
(LS) filter. Then, the LS filter resolves the inter-frame in-
consistencies introduced by the UK filter due to the inde-
pendent handling of the position, velocity, and acceleration.
The per-frame approach of the spacetime sweeping provides
a surprising performance gain. It is remarkable that now
editing of motion that involves dynamic constraints such as
dynamic balancing can be done interactively.

1 Introduction

Since motion capture became a commonplace technique
for generating realistic human-like animation, motion edit-
ing for its reuse has become an important problem in com-
puter animation research. Almost always, an original cap-
tured motion needs to be modified even slightly to make
the character coherently interact with other characters or the
environment, or to meet various other needs of the anima-
tors. Researchers labelled their motion editing techniques
with some different terms such as motion retargeting, mo-
tion adaptation, motion transformation, or motion filtering.

In the past few years, a variety ofconstraint-basedmo-
tion editing techniques [7, 8, 14, 2, 18] have been proposed.
Constraints are the mathematical formulation of the features
to be preserved in a motion. Actually, all of our everyday
motion are conducted under a number of constraints. To

run a constraint-based motion editing algorithm, therefore,
animators have to specify the kinematic and dynamic con-
straints involved in the desired motion. For example, a plau-
sible limbo motion calls for a set of constraints illustrated
in Figure 1. Under the given constraints, the above methods
optimize an objective function parameterized in space and
time.

In most of the above constraint-based methods, the con-
straints consist of pure kinematic constraints such as the
desired position or trajectory of end-effectors. It is inter-
esting to note that the methods based on kinematic con-
straints can quite effectively generate useful variations of
the original motion. Several noticeable results are reported
in [7, 8, 14, 2]. But in some cases, the motion generated
from kinematic editing is not acceptable when the motion
is viewed in a dynamics context. For example, when we re-
target the motion of an adult to a child, especially when he
is carrying or swinging a heavy object, the kinematic mod-
ification of the original motion can not exhibit the different
handling of the situation of the child.

Notably, Popovíc and Witkin [18] took the first step to
include dynamics for editing captured motion. Their for-
mulation is a constrained optimization problem, which has
dynamic constraints as well as kinematic constraints, to
enforce physical correctness. To make their optimization
problem tractable, they devised a sophisticated character
simplification scheme. Nevertheless, the reduced problem
still remains in the realm of so-called spacetime optimiza-

Limbo Bar
Constraint

Dynamic
Balance

Foot Constraints
- No Skidding

No Backward Bending

Joint Strength
Limits

Initial
Pose

Final
Pose

Figure 1. Constraints in a limbo motion



tion. Spacetime constraints [30, 3] is a well established
principle to generate realistic, dynamic motion by solving
an optimization problem. However, spacetime optimiza-
tion is computationally expensive, which prohibits its use
in practical animation production.

In this paper, we present a new scalable method to real-
ize spacetime constraints. We call itspacetime sweeping,
which is a contrary concept to spacetime optimization. In-
stead of optimizing a single scalar value over the entire du-
ration of motion, spacetime sweeping tries to find the opti-
mum value at every frame in per-frame basis so that it can
run in real-time or at an interactive speed. Since spacetime
optimization cannot guarantee the global optimum, if space-
time sweeping can find solutions of reasonable quality, its
value for practical use can be quite considerable. How-
ever, there remains an important challenge in formulating
the spacetime constraints into a spacetime sweeping prob-
lem: the dynamic constraints involve the velocity, accelera-
tion, or other quantities which prohibit their per-frame basis
handling. We present a double-filter technique to overcome
such a hurdle in the subsequent sections.

Spacetime sweeping works as an enhancement opera-
tor. The first application of the sweeping may not pro-
duce completely correct results. For example, there may
be a slight dynamic imbalance or skidding in the supporting
foot. However, further sweeping can be applied to the above
result, and every application produces improved results in
the kinematic or dynamic accuracy. Such incremental be-
havior can be valuable in animation productions. Instead of
obtaining the final motion after a few hours, animators pre-
fer to see the rough outline of the motion interactively, and
if they like it they can improve the quality afterwards. The
above description is just to manifest the enhancing nature of
the sweeping algorithm. In actual experiments, it generated
a quite accurate result on the first application, and the result
quickly converged by later applications.

To achieve the above features, we cast the motion editing
problem as a constrained state estimation problem based on
the per-frame Kalman filter framework. The Kalman filter
optimally estimates the state of a system through two steps:
prediction and correction. In our problem, we (1) predict
motion parameters at each frame referring to the original
motion data and, then (2) correct the predicted result to meet
a set of user-specified constraints.

The rest of this paper is organized as follows: Section 2
reviews the related work, Section 3 introduces how we ap-
ply the Kalman filter to our problem, Section 4 explains the
dynamic constraints (balance and torque constraints), Sec-
tion 5 presents the double-filter method for dynamic con-
straint, Section 6 reports several experimental results, and
finally, Section 7 concludes the paper.

2 Related Work

2.1 Motion Editing and Retargeting

Bruderlin and Williams [1] regarded a motion as time-
varying signals, and applied signal processing techniques to
these signals. Witkin and Popović [31] introduced a mo-
tion warping technique. Gleicher [8] introduced a method
for retargeting a captured motion into different characters.
Lee and Shin [14] proposed multi-resolution approach in
dealing with motion signals by using a hierarchical curve
fitting technique. Choi and Ko [2] proposed an online mo-
tion retargeting technique using inverse rate control based
on Jacobian inverses. Shin et al. [20] also presented an on-
line technique based on the notion of dynamic importance
of end-effectors. Recently, Gleicher wrote a survey article
that compares a variety of motion editing methods [9].

2.2 Physically Based Spacetime Methods

Originally, the spacetime constraints approach was pro-
posed by Witkin and Kass [30], and Cohen [3] developed
a variation of the approach that uses spacetime windows.
They cast motion synthesis as a constrained optimization
problem for producing optimal motion that satisfies user-
specified constraints. In order to derive physically valid mo-
tions, they enforced Newton’s law as the constraint and op-
timized the energy function. Recently, Popović and Witkin
[18] proposed a physically based spacetime method for
transforming a capture motion by using a character simpli-
fication technique.

2.3 Kalman Filter

The Kalman filter has been one of the most widely used
methods for the estimation of dynamic systems, due to its
simplicity, optimality, tractability, and robustness [12, 16].
The original Kalman filter estimates the state of a linear sys-
tem from the measurements available online in such a way
that the error is minimized in the least-squares sense. How-
ever, virtually every nontrivial real world applications are
nonlinear, so theextended Kalman filter(EKF) [27, 28] ap-
proximates nonlinear transformations with linear ones (Ja-
cobians). The EKF has been very popular in a number
of estimation and control applications for decades. Some
researchers [11, 26, 24], however, very recently pointed
out the fundamental flaws of the EKF which mainly result
from the use of linear approximations, and proposed theun-
scented Kalman filter(UKF). Our spacetime sweeping algo-
rithm is based on the UKF.



3 Motion Editing
in the Kalman Filter Framework

In this section we explain how the constraint-based mo-
tion editing problem is formulated into the Kalman fil-
ter framework. We begin with introducing the unscented
Kalman filter (UKF).

3.1 Unscented Kalman Filter

The basic framework of the EKF involves estimation of
the state of a nonlinear dynamic system, which consists of
theprocess modelxk+1 = f(xk,vk) and themeasurement
modelzk = h(xk,nk), wherexk is the state of the sys-
tem, zk is the measurement, and the random variablesvk

andnk represent the process and measurement noise. The
EKF estimates recursively the mean and covariance of the
state through the followingpredictor-correctoralgorithm.
Assumingvk andnk have zero-mean noise,

Predict (time update)

x̂−k = f(x̂k−1, 0) (1)

Correct (measurement update)

x̂k = x̂−k + K(zk − h(x̂−k , 0)) (2)

The time update equation is responsible for predicting thea
priori estimatêx−k of the next state. The measurement up-
date equation is responsible for correctingx̂−k by reflecting
the new measurementzk to obtain thea posterioriestimate
x̂k. K is the Kalman gain that is designed to minimize the
measurement error.

The fundamental limitation of the EKF comes from its
linearization approach (Jacobian) for calculating mean and
covariance. It reduces accuracy and causes the convergence
problem when the nonlinearity is severe. Also, the method
requires calculation of the Jacobian matrix which is difficult
to implement.

Julier and Uhlmann [11] proposed the UKF as a
derivative-free alternative to the EKF. The basic mechanism
of the UKF is same as the one described above by Equa-
tions (1) and (2). But the UKF performs state estimation by
approximating the probability distribution undergoing the
nonlinear function, rather than approximating the nonlin-
earity itself as in the EKF. For this, the UKF utilizes theun-
scented transformation(UT), a deterministic sampling ap-
proach to calculate the statistics of a random variable which
undergoes a nonlinear transformation. For further discus-
sion, we first elaborate on the UT.

Consider annx dimensional random variablex having
the mean̂x and covariancePx, and suppose that it propa-
gates through an arbitrary nonlinear functiong : Rnx 7→
Rny to generatey = g(x) (Figure 2(a)). We choose a set

(a) Actual Sampling (b) Linearization (EKF) (c) UT

y = f (x)

true mean

true covariance

covariance

mean

y = f (x)
P = A P Ay x

T

f (x)

A P Ax
T

sigma points

transformed
sigma points

UT mean

UT covariance

y = f (x )ii

Figure 2. Mean and covariance propagation: (a)the
true mean and covariance using real sampling,
(b)EKF’s linearization approach, (c)UT (5 sigma
points used in 2D cases.)

of 2nx + 1 weighted samplesXi (sigma points) determinis-
tically so that they completely represent the true mean and
covariance of random variablex (Figure 2(c)).

X0 = x̂ W0 = κ/(nx + κ) i = 0

Xi = x̂ + (
√

(nx + κ)Px)i Wi = 1/{2(nx + κ)} i = 1, ..., nx

Xi = x̂− (
√

(nx + κ)Px)i Wi = 1/{2(nx + κ)} i = nx + 1, ..., 2nx

(3)

whereκ is a scaling parameter,(
√

(nx + k)Px)i is theith row
or column of the matrix square root of(nx + k)Px, andWi

is the weight associated with thei-th sigma point so that∑2nx
i=0 Wi = 1. Now each sigma point is propagated through

the nonlinear function to yield a set of transformed sigma
points,

Yi = g(Xi) i = 0, . . . , 2nx (4)

The mean and covariance ofy are approximated by a
weighted average mean and covariance of the transformed
sigma points.

ŷ =
∑2nx

i=0 WiYi

Py =
∑2nx

i=0 Wi(Yi − ŷ)(Yi − ŷ)T (5)

As illustrated in Figure 2, compared to the EKF’s linear ap-
proximation, the UT is accurate to the second order for any
nonlinearity function.

The UKF is an extension of the UT to the Kalman filter
framework. The following box (Algorithm 1) compactly
shows the standard UKF algorithm and its related equa-
tions. More comprehensive discussion about the UKF can
be found in [11, 26].



Initialize the state mean and covariance
Fork = 1,. . .,∞

1. Calculate sigma pointsXk−1 using Equation (3)

2. Predict (time update):
Xk|k−1 = F [Xk−1]

x̂−k =
∑2nx

i=0 WiXi,k|k−1

P−
k =

∑2nx
i=0 Wi[Xi,k|k−1 − x̂−k ][Xi,k|k−1 − x̂−k ]T + Vk

3. Correct (measurement update):
Yk|k−1 = H [Xk|k−1]

ŷ−k =
∑2nx

i=0 WiYi,k|k−1

Pykyk =
∑2nx

i=0 Wi[Yi,k|k−1 − ŷ−k ][Yi,k|k−1 − ŷ−k ]T + Nk

Pxkyk =
∑2nx

i=0 Wi[Xi,k|k−1 − x̂−k ][Yi,k|k−1 − ŷ−k ]T

Kk = PxkykP−1
ykyk

x̂k = x̂−k + Kk(yk − ŷ−k )

Pk = P−
k −KkPykykKT

k

Wi = sigma point weights,P−
k ,Pk = state error covariance,Vk = pro-

cess noise covariance, andNk = measurement noise covariance.

Algorithm 1. The standard UKF algorithm

It is reported that (1) UKF yields more accurate estima-
tions than EKF in most applications, since it guarantees the
second order accuracy for any nonlinearity; (2) UKF is fast
since it scales same as the linear Kalman filter; (3) UKF
is easier to implement than EKF since it does not bear any
linearization (Jacobian) [11, 26, 24]. For these reasons, in
this work we adopt the UKF as the numerical core for our
motion editing engine.

3.2 Formulating Motion Editing with UKF

The algorithm we develop in this paper is a constraint-
based motion editing, which transforms a given motion se-
quence to a new version so that the resulting motion sat-
isfies the given constraints. In this section, we show how
our motion editing problem is formulated in the Kalman fil-
ter framework. First, we focus only on the kinematic con-
straints.

We parameterize a motion by x(t) =
[p(t),q0(t), ...,qj(t)], where p(t) and q0(t) are the
position and orientation of the root, andq1(t), ...,qj(t)
are rotations at the joints. In dealing with orientations and
rotations, we carry both quaternions and exponential maps
together. It has been reported that unit quaternions and
exponential maps are numerically well-conditioned, and do
not create gimbal-lock singularities [21, 10].

Figure 3 shows the UKF’s predictor-corrector frame-
work for constraint-based motion editing. At each frame,
we predict the posex−(tk) for the new motion referring to
the original motion data, then correct the pose tox(tk) in
order to meet the desired constraints. The same procedure is

original motion

constraints

x ( )tk

-x ( )tk

k-1x ( )t

k-1x ( )t-

x ( )to

Figure 3. Prediction and correction scheme for
constraint-based motion editing

repeated for each frame while sweeping through the frames.

Motion Prediction: We design the process model for
motion prediction so that the prediction is based on the
original motion data. We can use a simple first-order
position-velocity model or a more complex model using
forward dynamics of the body. But we already have the
original motionxo(t), which is a good goal the new motion
has to resemble. So, in this work, we use the original
motion directly for the process modelf(·), that is

x−(tk) = xo(tk). (6)

Unlike the standard UKF algorithm in Algorithm 1, we do
not propagate the state error covariances through frames,
instead we provideP−

k as a user-controllable parameter,
from which we calculate the sigma points for the next
correction step.

Motion Correction: To satisfy the given constraints,
we treat the constraints as perfect measurements in the
correction step. In the kinematic motion editing, inverse
kinematics (IK) is a very powerful and essential technique.
IK constraints can be represented ashIK(x) = z, where
x(t) is the motion parameter,z(t) is the desired paths
of designated body points, andhIK(·) is formulated by
recursive forward kinematics.

To reflect a set of given constraints, we correct the pre-
dictionx−(tk),

x(tk) = x−(tk) + Kk[z(tk)− hIK(x−(tk))]. (7)

The Kalman gainKk transforms the error in the measure-
ment space to the motion update that needs to be added to
the result of the prediction. It is computed by the UKF equa-
tions described in Algorithm 1.

There exist two user-controllable parameters, which sig-
nificantly affect the details of the resulting motion.

State error covariance matrixP−
k : The state error covari-

ance means a degree of uncertainty, and so it affects the



amount of the displacement of each DOF in the correc-
tion step. A large state error covariance results in a large
displacement of the corresponding joint.

Measurement noise covariance matrixNk: The measure-
ment noise covariance is interpreted as rigidity of con-
straints. Typically, this parameter is set to zero treating
the constraints as perfect measurements. It is especially
useful when two constraints conflict to each other. The
one with a larger covariance (soft constraint) yields to
the other with a smaller covariance (hard constraint).

According to our experiments, the above UKF based
method produces surprisingly accurate results compared to
the EKF based methods. When the retargeting task involves
only kinematic constraints, the above method could produce
kinematically retargeted result in realtime without poten-
tial discontinuities due to the per-frame approach. This is
demonstrated in Section 6.

4 Dynamic Constraints

For a motion to be plausible in a dynamic sense, the mo-
tion should be (1) dynamically balanced and (2) comfort-
able. In this section, we introduce two dynamic constraints:
balance constraints and torque constraints.

4.1 Balance Constraints

Human is a two-legged creature, and thus balance is an
important factor for judging the realism of motion. In a
static posture, balance is easily accomplished by confining
the center of mass of the character to the supporting area.
In a moving character, however, balancing involves more
complicated process.

The zero moment point(ZMP) has been widely used
in robotics to deal with the dynamic balance problem in
biped robots [25, 6, 17, 5]. Tak et al. [23] introduced
an optimization-based balancing algorithm, which modifies
a given motion into a dynamically balanced one based on
the ZMP concept. According to [23], the dynamic balance
constraint can be stated in terms of ZMP as:a motion is
balanced when and only when the ZMP trajectory is kept
within the supporting area.Note that this ZMP-based bal-
ance purely depends on physical validness. In a real world,
the ZMP always exists within the supporting area, even
when the body is falling down at the moment. In a graph-
ical world, however, the ZMP of a motion can go out of
the supporting area, which means the motion is physically
incorrect. In this paper, balancing means correcting physi-
cally incorrect motion in a balance context into the correct
one while preserving the original motion as much as possi-
ble. More comprehensive discussions on the ZMP concept
and its relation to dynamic balancing can be found in [23].
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Figure 4. The ZMP during a motion

The ZMP can be derived from the body dynamics of the
character. Since the sum of the moment contributions made
from each body segments should be zero at ZMP (Figure 4),
we can obtain the ZMP by solving the following equation
for P ∑

i

(ri −P)× {mi(−r̈i + g) + fi} = 0, (8)

wheremi is the mass of linki, ri is the center of mass of
link i, fi is the external forces applied on linki, andg is the
acceleration of gravity.

The balancing algorithm involves three steps: (1) We cal-
culate the ZMP trajectory of the original motion using the
above ZMP equation, and find out the portions in which
the motion is not balanced, then (2) if there are some por-
tions of ZMP trajectory that go outside the supporting area,
we project them into the area. This is done by an off-line
job. (3) We finally correct the motion so that it satisfies the
new ZMP trajectory constraint. Sinceri and r̈i of Equa-
tion (8) is parameterized with the character’s DOFs and
their derivatives, we can formulate the balance constraint
ashbalance(x, ẋ, ẍ) = z, wherez is the desired ZMP tra-
jectory.

4.2 Torque Constraints

The torque a human body can exert at a joint is lim-
ited. Therefore a motion violating these torque limits may
look unrealistic or uncomfortable. [15, 13] have introduced
methods to generate more comfortable version of the orig-
inal motion by directly or interactively modifying the mo-
tion parameters so that the joint torque remains within the
strength limits. We achieve the same goal by imposing the
joint torque constraints in our dynamic constraints solver.

The desired torque limits can be obtained from biome-
chanics literature [29], or specified by animators for their
own purposes. The torque constraints are formulated as
htorque(x, ẋ, ẍ) = z, wherez is the desired torque lim-
its. The functionhtorque(·) relates the motion parameters
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to the joint torques, which is generally called inverse dy-
namics. In our work, to achieve maximum performance, we
use the linear-time recursive Newton-Euler method [4, 19]
in implementing the inverse dynamics.

5 Spacetime Sweeping for Dynamic Con-
straints

Given the motion sequencex(t), the motion parameters
involved in the dynamic constraints (e.g.ẋ,ẍ) have different
nature from the ones in the kinematic constraints. To han-
dle the dynamic constraints in the per-frame Kalman filter
framework is much more challenging because they involve
velocity and acceleration properties.

To realize this, we develop adouble-filter sweeping
method, which is the concatenation of two filters: (1) the
UK filter and (2) the least-squares (LS) filter. The idea is
that, first, the UK filter resolves the dynamic constraints ma-
nipulatingx, ẋ, ẍ as if they are independent DOFs, then the
LS filter is applied to the inconsistent UK-filtered result to
get the consistent version. The operation of the double-filter
sweeping is illustrated in Figure 5.

5.1 UK Filter

We form the augmented motion[xo ẋo ẍo] from the orig-
inal motion sequencexo. Then, the UK filter is applied to
each ofxo, ẋo, andẍo independently, to produce the inter-
mediate version of the motion. However, bothẋ andẍ are
direct functions ofx in the time domain, which means that
the stream of (x,ẋ,ẍ) from the UK filer may not constitute
the valid tuples of position, velocity, and acceleration.

The UK filter used here is basically the same mechanism
as described in Section 3.2 except that the state vector is
now [x ẋ ẍ] and the dynamic constraints appearing in the

correction step (Equation (7)) are formulated in the form of
hbalance(x, ẋ, ẍ) = z or htorque(x, ẋ, ẍ) = z.

5.2 LS Filter

In the above intermediate UK-filtered result, the
position-velocity-acceleration relationship may have been
corrupted. The mission of the LS filter is to rectify (in an
optimal sense) the corrupted relationship. The LS filter is
applied to the intermediate result to produce the double fil-
tered motion (x,ẋ, ẍ). Figure 5 shows the application of the
double filter to a single DOF (q, q̇, q̈).

We accomplish the job of rectifying the corrupted rela-
tionship using the B-spline curve fitting technique. For each
DOF (q, q̇, q̈) of the UK-filtered result, we find the B-spline
curveC that, together withĊ andC̈, best approximates (q,
q̇, q̈). It corresponds to finding the control pointsc that
give the least square solution to the set of equationsBc=q,
Ḃc=q̇, B̈c=q̈, whereB, Ḃ, B̈ are the matrix of the B-spline
curve basis function and its derivatives evaluated at corre-
sponding time steps. We can combine them into the single
equationBc = d, whereB = [B Ḃ B̈]T andd = [q q̇ q̈]T .
This is an over-determined least squares problem. With the
covariance matrixV included, we findc that minimizes

(B c− d)T V−1(B c− d), (9)

whereV is a diagonal matrix for scaling the sensitivity
among the fitting dataq, q̇, and q̈. The classical linear
algebra gives the solution to this problem [22]. Now, the
discrete form of the final motion is obtained by evaluating
the B-spline curves at all time steps.

The above curve fitting is done within thesweeping win-
dow, the local duration just swept by the the UK filter as
shown in Figure 5. The user can specify the duration of a
sweeping window. The wider window costs more computa-
tion time, but gives a more accurate fitted result.

5.3 Discussion

The above double-filter sweeping method does not guar-
antee the dynamic correctness at the first trial. It is under-
standable considering the nature of per-frame-processing-
then-fitting approximation. However, a very important fea-
ture of the sweeping method is its enhancing property:
when we apply the double filter to the filtered result again,
we get more accurate result. Another important property is
that the result converges quickly. Therefore we repeat the
sweeping until we get the acceptable result. In our experi-
ments, it took on average 4 or 5 sweepings to converge. The
process was quite acceptable since it allowed the animator
to check the results interactively. But the convergence prop-
erty was not always guaranteed. We found that, in some



Figure 6. Motion editing system implemented as a
Maya plug-in

cases, especially when the motion was highly dynamic, the
method suffered from the convergence problem.

Our spacetime sweeping approach is near-sighted to the
original motion. Therefore when a global optimum is re-
quired, our per-frame approach may not give the desired
solution. For example, to generate a punch motion with the
dynamic constraint that the final speed of a fist should be
considerably larger than that of the original motion, the ut-
most pull-back action is required long before the arm makes
the hit. But the sweeping algorithm tries to achieve such a
constraint by modifying only the frames in the neighbor-
hood of the final frame. In such a case, it is helpful to put
a kinematic editing step before the double-filter sweeping,
to generate a reasonable initial guess (we call it akinematic
hint).

6 Results

We have implemented the spacetime sweeping technique
as a Maya plug-in using the Maya’s plug-in API and MEL
scripts on a PC with a Pentium-3 933MHz processor and a
512-Mbytes main memory. Figure 6 is a screen shot of our
implementation. With this plug-in, animators could interac-
tively edit a motion to their purpose by changing parameters
or manipulating desired paths.

Our human model has total 54 DOFs with all the
joints represented by quaternion ball joints. As input se-
quences, we used the optical motion capture data of walk-
ing, sword swing, ballet, etc. In order to show the re-
targeting quality and the range of application of our al-
gorithm, we retargeted the captured data to new charac-
ters (with different link lengths, body mass distribution,
joint strength limits), and to new environments (with ob-
stacles, slopes, wind, or other terrain conditions). All the

motion clips mentioned in this section can be found in
http://graphics.snu.ac.kr/research/ss/ .

6.1 Retargeting to Different Characters

We retargeted several captured motions (walking mo-
tion, sword swing, ballet dancing) of the original character
to other characters with different link lengths and weights,
joint strengths, etc. In the figures and animation clips, the
thickness of a link reflects its weight.

Realtime Kinematic Motion Retargeting. In order to ex-
periment our kinematic motion retargeting, we captured
a walking sequence of a character having normal anthro-
pometry, and retarget it to two other characters having
quite different anthropometry: one with shorter limbs and
the other with longer limbs. The animation clip #1 shows
the result, and Figure 7 (a) is a snapshot during this mo-
tion. Although the animation was generated with off-line
rendering, the sweeping process ran in real-time. We first
adjusted the height of the pelvis of the two target char-
acters to account for the differences in height. Then, we
transmitted in on-line the joint angle data (used as the mo-
tion data) and the foot trajectories (used as the kinematic
constraints) of the original character to the target charac-
ters.

Sword Swing. We captured a sword-swing motion (the
sword weighs about 1.5 Kg), in which the subject made a
big swing. We retargeted the motion to a very lean char-
acter (weighs14 of the original character) to see how the
momentum of the heavy sword affects the motion of the
target character. We performed the sweeping with the bal-
ance constraint. The motion clips #2 and #3 are the orig-
inal and retargeted motion, respectively. We show a few
snapshots during the motions in Figure 7 (b). The upper-
body of the target character makes a big back-and-forth
movement compared to the original character.

Ballet Dancing. We retargeted a ballet motion of a balle-
rina to a child character who has quite heavy lower limbs.
Since the ballerina had strong joints (due to the training),
she could effortlessly rotate the joints (especially the hip
joint) over a wide range of angles. On the other hand, the
joints of a child are usually weak, and such weakness will
be more apparent in the hip joint when the lower limb is
heavy. To account for the above distinctions, we imposed
the torque constraints. Also with the balance constraint,
we performed the sweeping. The motion clips #4 and #5
show the original and retargeted ballet motions, and Fig-
ure 7 (c) is showing some snapshots during the motions.
As expected, the leg of the child could not be lifted as high
as in the ballerina, and his upper body had to make sways
to compensate the momentum of the heavy swing leg.



Limbo Walking. In this experiment, we used a normal
walking motion as an input sequence to generate a limbo
walking. To avoid unnecessary wandering in dealing with
dynamic constraints, first we outlined a plausible limbo
motion kinematically. Then, we performed the sweeping
with the balance and torque (at the waist) constraints along
with the limbo-bar constraint. We designated the torque
constraints as a hard constraints, since injury is the first
thing to avoid in the actual limbo motion. The resulting
motion is shown in the animation clip #6. The top row of
Figure 7 (d) shows a several snapshots taken during the
motion.
We re-fed the above retargeted result to the sweeping al-
gorithm in order to produce the limbo motion of a third
character, who has a very heavy torso. In this setup, the
character could not bend the torso as in clip #6 due to
the (hard) torque constraints. The resulting animation is
shown in the motion clip #7, and the snapshots during the
motion is shown in the bottom row of Figure 7 (d).

To produce the above animation clips, we swept 5 times
for the sword-swing and ballet-dancing, and 4 times for the
limbo-walking. The sweeping window of the LS filter was
32-frames wide. Although the lengths of the above motion
sequences are different, they ran at a uniform interactive
rate (5 frames per second).

6.2 Retargeting a Normal Walk to New Environ-
ments

The experiments in this section show that a walking se-
quence can be retargeted to accommodate different terrains,
winds, etc. The retargeting was done by 3 times of the
sweepings with a 36-frame wide sweeping window. The
result is shown in the motion clip #8, and the snapshots dur-
ing the animation are shown in Figure 8.

Ascending Uphill / Descending Downhill. We modelled
a 20-degree slope, and retargeted a walking motion on a
level ground to the ascending and descending versions.
The spacetime sweeping with the balance constraints and
the new adjusted foot trajectory constraints produced dy-
namically plausible walks.

Walking on Widened Footprints. We widened the foot-
prints in the lateral direction, and ran the spacetime sweep-
ing with the balance constraints. We can observe that the
character rhythmically sways his body to meet the bal-
ance constraint, which could not be generated by kine-
matic constraints.

Walking against a Wind. We put a strong windstorm in
front of the walking character. The magnitude of the wind
force was set to one third of the gravity force. The retar-
geted character walks leaning forward in order to maintain
the dynamic balance.

7 Conclusion

We have presented a new approach to the problem of
editing an existing motion to satisfy kinematic and dynamic
constraints. We cast the motion editing problem as a con-
strained state estimation problem based on the per-frame
Kalman filter framework.

Spacetime sweeping incorporates the kinematic and dy-
namic constraints in a scalable framework. When only kine-
matic constraints are involved, application of the UK filter
could guarantee the kinematically constrained motion with
real-time performance. When dynamic constraints are in-
volved, application of the double-filter (UK and LS filters)
could produce a dynamically sound motion in an interactive
rate.

Spacetime sweeping works as an enhancement operator,
so that every application produces improved results in the
kinematic or dynamic accuracy. Such incremental behavior
can be valuable in animation productions, since the inter-
mediate results can be interactively checked.
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