Modeling Anisotropic Surface Reflectance with Example-Based Microfacet Synthesis

PARK HYEONG GYU KIM DO HYUN

Computer Graphics and Image Processing Laboratory, SNU
Paper Info

• Modeling Anisotropic Surface Reflectance with Example-Based Microfacet Synthesis

• J. Wang* S. Zhao† X. Tong* J. Snyder‡ B. Guo*
 * Microsoft Research Asia
 † Shanghai Jiaotong University
 ‡ Microsoft Research

• Proceedings of ACM SIGGRAPH 2008
Goal

• Modeling spatially varying anisotropic reflectance
Anisotropic Reflectance

isotropic

anisotropic
Contributions

• Generality
 – Modeling and acquiring BRDF of a surface (cf. wood, hair, cloth, fur)

• Simplicity
 – *Single-view* acquisition

• Accuracy
 – Results consistent with appearance of real-world samples
BRDF

• Bidirectional reflectance distribution function
• Describes how light is reflected from a surface given:
 – Incoming light direction
 – Outgoing view direction

$$\rho(\mathbf{i}, \mathbf{o}) = \frac{dL_o(\mathbf{o})}{dE_i(\mathbf{i})}$$
SVBRDF

• *Spatially varying BRDF*

• Captures BRDF variation based on spatial location

\[
\rho(x, i, o) = \frac{dL_o(x, o)}{dE_i(x, i)}
\]
Rendering Using BRDF

- Rendering equation

\[L(x, o) = \int_{\Omega_+(n)} \rho(x, i, o)L(x, i)(i \cdot n)di \]
BRDF Characteristics

• Laws of physics impose two constraints on any BRDF

• Helmholtz reciprocity
 – ‘If I can see you, then you can see me.’
 \[\rho(i, o) = \rho(o, i) \]

• Conservation of energy
 – Outgoing energy cannot be greater than incoming one
 \[R(i) = \int_{\Omega_+}(o)(o \cdot n)d\omega \leq 1 \]
Fresnel Reflectance

- Specular reflectance at interface of two materials

\[
F_r = \frac{1}{2} (\rho_{||}^2 + \rho_{\perp}^2)
\]

\[
\rho_{||} = \frac{\eta_2 \cos \theta_1 - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_1 + \eta_1 \cos \theta_2}
\]

\[
\rho_{\perp} = \frac{\eta_1 \cos \theta_1 - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_1 + \eta_2 \cos \theta_2}
\]
BRDF Models

• Purely empirical models
 – Gouraud (1971) and Phong (1975)
 – Controllable with a few intuitive parameters

• More complex models
 – Schlick (1994) for efficiency
 – Ward (1992) to include anisotropy
 • Empirical Gaussian-based model
 • Ignores underlying microstructure
 • Misses details in many real-world materials
 – Lafortune (1997) to enforce reciprocity
Direct Measurement of BRDF

• Alternative approach to acquiring BRDF
 – Gonioreflectometer, light dome, etc.

• Tabulated BRDF
 – Realistic
 – Large data set
 – Difficult to capture
 • Lengthy process
 • Expensive hardware
 • Image registration
Microgeometry

- Surface detail in microscale
 - Too small to be seen directly
 - *Statistical* description of light-scattering effects

- Microscale surface normals (vs. macroscopic surface normal)
 - Produce most important visual effect
Distribution of Surface Normals

• Isotropic
 – Rotational symmetry
 – Lacking any inherent directionality

• Anisotropic

brushed metal velvet
Shadowing & Masking

- Geometrical effects
 - Another effects of microgeometry on surface reflectance
 - Less important than the distribution of normals itself
Microfacet Theory

• A mathematical analysis of effects of microgeometry on reflectance
 – Torrance and Sparrow (1967)
 – Blinn (1977)
 – Cook and Torrance (1981)

• Models microgeometry as a collection of *microfacets*
 – Tiny, flat Fresnel mirror on surface, with its own normal

\[l \equiv i \]

\[v \equiv o \]
Limitation

• Focuses on modeling first-bounce specular reflection
 – No multiple bounces
 – No subsurface scattering

• Suffices for accurately modeling most materials
 – Additional *diffuse* term used for complete BRDF
Half Vector

- Vector pointing exactly halfway between i and o
 \[h = \frac{i + o}{\|i + o\|} \]

- Participating or *active* microfacets given i and o
 - Those whose normal is h
 - Reflectance depends on the fraction of active microfacets
NDF

• **Normal distribution function**
 – Probability density function: $D(h)$
 – High values in directions where normals are more likely to be pointing
 – Dominates surface appearance
Microfacet-Based BRDF Model

- Cook and Torrance (1981)

\[\rho(x, i, o) = \rho_d(x, i, o) + k_s(x) \rho_s(x, i, o) \]

- Diffuse term: \(\rho_d(x, i, o) = k_d(x) / \pi \)
- Specular term

\[\rho_s(x, i, o) = \frac{D(x, h) G(x, i, o) F(x, i, o)}{4(i \cdot n)(o \cdot n)} \]
Geometry Factor

- Accounts for shadowing and masking
 - $0 \leq G(x, i, o) \leq 1$
 - Probability the ray from i is reflected to o without being shadowed or masked at x

- Ashikhmin (2000)

$$G(x, i, o) = S(x, i)S(x, o)$$

$$S(x, k) = \frac{(k \cdot n)}{\int_{\Omega_{+}(k) \cap \Omega_{+}(n)} (h \cdot k)D(x, h)dh} \quad (k = i, o)$$

\leftarrow completed determined by NDF
Final SVBRDF Model

- Microfacet-based SVBRDF model

\[\rho(x, i, o) = \frac{k_d(x)}{\pi} + k_s(x) \frac{D(x, h)S(x, i)S(x, o)F(x, i, o)}{4(i \cdot n)(o \cdot n)} \]

- Shadowing function

\[S(x, k) = \frac{(k \cdot n)}{\int_{\Omega_+(k) \cap \Omega_+(n)} (h \cdot k)D(x, h)dh} \quad (k = i, o) \]
Overall Procedure

Setting Up BRDF Model

Measuring BRDF

Fitting and Completing NDF

\[
\rho(x, i, o) = \frac{k_d(x)}{\pi} + k_s(x) \frac{D(x, h)S(x, i)S(x, o)F(x, i, o)}{4(i \cdot n)(o \cdot n)}
\]
BRDF Acquisition
Capturing Process
Reflectance Data Acquisition

- Product of capturing process
 - BRDF sample $\rho(x, i, o)$
 - At every x
 - Densely sampled i
 - Approximately constant o
NDF Fitting

• Obtaining NDF from specular BRDF data
 – By iterative updates
 – Specular term
 \[\tilde{\rho}_s(x, i, o) = \frac{D(x, h)S(x, i)S(x, o)F(x, i, o)}{4(i \cdot n)(o \cdot n)} \]
 – Shadowing function
 \[S(x, k) = \frac{(k \cdot n)}{\int_{\Omega_+(k) \cap \Omega_+(n)} (h \cdot k)D(x, h)dh} \quad (k = i, o) \]

• Partial domain and bias problem
Partial NDF

- Obtained NDF covers only a subregion of $\Omega_+(n)$

example-based microfacet synthesis
Biased Estimation

\[\tilde{\rho}_s(x, i, o) = \frac{D(x, h)S(x, i)S(x, o)F(x, i, o)}{4(i \cdot n)(o \cdot n)} \]

\[S(x, k) = \frac{(k \cdot n)}{\int_{\Omega_+(k) \cap \Omega_+(n)} (h \cdot k)d\mathbf{h}} \]
Remedy for Bias

- Minimizing the bias
 - Isotropically constrain shadowing function in each iteration

[Diagram showing the effect of constraint on shadowing function]
Recovered Partial NDF

ground truth

Ngan (2005)

Wang (2008)
Completing NDF

• Key observation
 – Many surface points share similar NDF (but in different, i.e. rotated, local frame)
Example-Based Microfacet Synthesis
NDF Synthesis

- partial NDF to complete
- merged partial NDFs
- completed NDF
Synthesis Procedure

For each surface point \mathbf{x}

$$D_0(\mathbf{x}) = D(\mathbf{x})$$

$$\Omega_0(\mathbf{x}) = \Omega(\mathbf{x})$$

While $\Omega_i(x) \not\subset \Omega_+$

$$(\mathbf{x}', \varphi') = \text{argmin}_{\tilde{x}, \tilde{\varphi}} \{ \| D \tilde{\varphi}(\tilde{x}) - D_i(\mathbf{x}) \| \}$$

$$D_{i+1}(\mathbf{x}) = \text{merge}[D_i(\mathbf{x}), D\varphi'(\mathbf{x}')]$$
Synthesis Acceleration

• Search Pruning
 – To accelerate the search by pruning the set of candidates
 – Idea
 • NDF domain is extended azimuthally => the overlap region is mostly determined by the candidate merged last and the current candidate (overlap region : \(\Omega(\phi) = \Omega \cap R(\phi) \Omega \)
Synthesis Acceleration (con’t)

• Search Pruning
 – Idea
 • Since the candidates have a 50~85% overlap with \(D_i(x) \), \(\varphi \) need to be chosen in a limited range.
 \[
 \text{result : } \{ \Omega(\varphi_i) \mid i = 1, 2, \ldots, n_\Phi \}
 \]
 • Within each \(\Omega(\varphi_i) \), compute the histogram of \(D(x,h) \) at each surface point \(x \) using \(m=32 \) buckets. (\(D \)'s range \([0,1]\))
 • Use 32D vector as a search key to find merge candidates
 • To find quickly, precompute an ANN tree before synthesis
Synthesis Acceleration (con’t)

• NDF Clustering
 – To reduce both the number of NDFs that must be synthesized and searched.
 – Idea
 • To find the representatives applying k-means clustering to the partial NDFs of all surface points.
 • Representative in each cluster is closest to the cluster center.
 • The number of representatives set to be 1% of the number of surface points
 • Ensure each cluster contains only similar samples
Synthesis Acceleration (con’t)

• NDF Clustering
 – Idea
 • Find interpolation weights on the partial data.

\[D(x_i, h) = \sum_{j \in N_i} w_{ij} D(x_{i^*}, h), \]

 – \(D(x_i, h) \): (non-representative) partial NDF
 – \(D(x_{i^*}, h) \): neighbor representatives
 – \(j \in N_i \): indexes of the neighbor representatives of \(x_i \)
 » k=16 nearest representatives, excluding those whose distance < 5\(\lambda \)
 (\(\lambda \): smallest distance between 2 representative NDFs)
 – \(w_{ij} \): interpolation coefficients
 » \(\sum_{j \in N_i} w_{ij} = 1 \)
Experimental Results

- Full 6D SVBRDF data as well as 4D
- Fixed-view data slices captured with simple device

<table>
<thead>
<tr>
<th>Sample</th>
<th>Image Res.</th>
<th>Light Res.</th>
<th>NDF Res.</th>
<th>View (θ, φ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>red satin</td>
<td>850×850</td>
<td>20×24</td>
<td>32×32</td>
<td>(57.6°, 0.6°)</td>
</tr>
<tr>
<td>yellow satin</td>
<td>750×750</td>
<td>20×24</td>
<td>32×32</td>
<td>(58.3°, -0.2°)</td>
</tr>
<tr>
<td>wallpaper</td>
<td>800×800</td>
<td>20×20</td>
<td>32×32</td>
<td>(63.6°, -0.8°)</td>
</tr>
<tr>
<td>velvet</td>
<td>600×500</td>
<td>20×20</td>
<td>32×32</td>
<td>(61.2°, 2.1°)</td>
</tr>
<tr>
<td>rose wood</td>
<td>600×600</td>
<td>40×65</td>
<td>32×32</td>
<td>(53.3°, 4.6°)</td>
</tr>
<tr>
<td>oak wood</td>
<td>800×800</td>
<td>40×65</td>
<td>32×32</td>
<td>(48.6°, -0.3°)</td>
</tr>
<tr>
<td>aluminium</td>
<td>250×400</td>
<td>40×65</td>
<td>128×128</td>
<td>(40.8°, 4.9°)</td>
</tr>
<tr>
<td>copper</td>
<td>800×800</td>
<td>40×50</td>
<td>32×32</td>
<td>(51.0°, 1.9°)</td>
</tr>
</tbody>
</table>
Experimental Results (con’t)

• PC specification
 – Intel Core™2 Quad 2.13GHz
 – 4GB memory

• Capturing time
 – About 1 hour using single-exposure acquisition (for less specular materials like velvet)
 – About 5-10 hours using multiple-exposure acquisition (for highly specular materials like aluminum)
Experimental Results (con’t)

• Image Data Processing
 – 2~4 hours
 – It is dominated by disk I/O

• Microfacet synthesis algorithm
 – Partial NDF reconstruction takes about 1 hour
 – Synthesis takes 2~3 hours
 – Estimation of the remaining BRDF parameter takes 3~4 hours
 – Results using only ray tracing, and direct lighting effect
Experimental Results (con’t)

• Validation with Dense-View Data

(a) (b) (c)

(d) (e) (f)

(g) (h)
Experimental Results (con’t)

- Results with Single-View data
 - (1), (3) : original sample
 - (2), (4) : rendered by synthesized model
 - (a) : yellow satin
 - (b) : brushed aluminum
 - (c) : oak
Experimental Results (con’t)

- Results with Single-View data
 - Synthesized microfacet model VS fitted Ward model
 - (a) : real measured appearance, (b) Synthesized model
 (c) : isotropic Ward, (d) : anisotropic Ward
Experimental Results (con’t)

- Results with Single View-data
 - (a) weathered copper, (b) brushed aluminum
 - (c) oak wood, (d) rose wood
Experimental Results (con’t)
Conclusions

• Pros
 – High resolution (spatial & angular), realistic result
 – To avoid image registration
 – Easier data acquisition and processing
 • Single-view capture
 • Cheap device
 • Shorter capturing time

• Cons
 – Does not capture unusual phenomena dominated by multiple light bounces, such as retro-reflection
Future Works

• Further optimizing in performance
 – Data capture, synthesis, and parameter estimation algorithms
• To handle samples that are not flat
• Generalizing to capture translucent objects and multiple bounce effects
Thank You