
Chapter 12:

PBO & FBO

Graphics Programming, 13th Oct.

 Graphics and Media Lab.

 Seoul National University 2011 Fall

2 Graphics and Media Lab. at Seoul National University

• Vertex Buffer Object (VBO)
– allows vertex array data to be stored in the

device memory.

– GL_ARB_vertex_buffer_object

• Pixel Buffer Object (PBO)
– allows pixel data to be stored in the device

memory for further intra-GPU transfer

– GL_ARB_pixel_buffer_object

• Frame Buffer Object (FBO)
– allows rendered contents (color, depth,

stencil) to be stored in non-displayable
framebuffers (e.g., texture object,
renderbuffer object)

– GL_EXT_framebuffer_object

Abstract Buffer Objects

OpenGL controlled memory

3 Graphics and Media Lab. at Seoul National University

• Can be considered as an extension of VBO
– But instead of storing vertex data, it stores pixel data

– Pixel data can be managed more efficiently via PBO

Pixel Buffer Object

4 Graphics and Media Lab. at Seoul National University

Example – Sketch Program

5 Graphics and Media Lab. at Seoul National University

while(1) {

Draw a textured rectangle (to framebuffer);

Draw by blending the red square at the current mouse
position (to framebuffer);

Read pixels from the framebuffer (to CPU array);

Use the read pixels to update the texture;

}

How to Implement it?

Host

Memory

Initial

Data

Texture

Object

Frame

Buffer

...

6 Graphics and Media Lab. at Seoul National University

The Code w/o PBO or FBO

if(g_pboMode == 0) {
 glPixelStorei(GL_PACK_ALIGNMENT, 4);
 glReadPixels(0,0, g_winWidth,g_winHeight, PIXEL_FORMAT, PIXEL_TYPE, g_imageData);
 // reading framebuffer content to host memory
 glBindTexture(GL_TEXTURE_2D, g_texId);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, g_winWidth, g_winHeight, PIXEL_FORMAT,
 PIXEL_TYPE, g_imageData);
 glBindTexture(GL_TEXTURE_2D, 0);
}

7 Graphics and Media Lab. at Seoul National University

• Via PBO, you can make pixel data transfer
done within the device memory.

– Conventional Pixel Data Transfer

– Using PBO

Speeding up Pixel Data Transfer with PBO

Host

Memory

Texture Object

Framebuffer

Host

Memory
PBO

glReadPixels,glWritePixels

glTexImage2D,glTexSubImage2D

Texture Object

Framebuffer

glReadPixels,glWritePixels

glTexImage2D,glTexSubImage2D

8 Graphics and Media Lab. at Seoul National University

• To maximize the streaming performance,
multiple PBOs can be used.

– ex. Asynchronous uploading textures from CPU

– ex. Asynchronous read-back

Use of Multiple PBOs

map &

update

unpack

pack

map &

update

9 Graphics and Media Lab. at Seoul National University

• PBO has two targets (storages):
– GL_PIXEL_PACK_BUFFER

– GL_PIXEL_UNPACK_BUFFER

Usage of PBO

PBO
Framebuffer

or

Texture Object

Pack
(write to buffer)

Unpack
(read from buffer)

glReadPixels

glWritePixels
glTexImage2D

10 Graphics and Media Lab. at Seoul National University

• PBO has two targets:
– GL_PIXEL_PACK_BUFFER

– GL_PIXEL_UNPACK_BUFFER

• Usage: Create & Delete

Usage of PBO

PBO

Framebuffer

or

Texture Object

Pack
(write to buffer)

Unpack
(read from buffer)

glReadPixels

glWritePixels
glTexImage2D

 // Similar to creating VBO

 GLuint pboId;

 glGenBuffers(1, &pboId);

 ...

 glDeleteBuffers(1, &pboId);

11 Graphics and Media Lab. at Seoul National University

• PBO has two targets:
– GL_PIXEL_PACK_BUFFER

– GL_PIXEL_UNPACK_BUFFER

• Usage: PBO for reading

Usage of PBO

PBO

Framebuffer

or

Texture Object

Pack
(write to buffer)

Unpack
(read from buffer)

glReadPixels

glWritePixels
glTexImage2D

 // For example, read pixels from the front framebuffer to PBO

 glReadBuffer(GL_FRONT);

 glBindBuffer(GL_PIXEL_PACK_BUFFER, pboId);

 glReadPixels(0,0, w,h, GL_GBRA, GL_UNSIGNED_BYTE, 0);

12 Graphics and Media Lab. at Seoul National University

• PBO has two targets:
– GL_PIXEL_PACK_BUFFER

– GL_PIXEL_UNPACK_BUFFER

• Usage: PBO for writing

Usage of PBO

PBO

Framebuffer

or

Texture Object

Pack
(write to buffer)

Unpack
(read from buffer)

glReadPixels

glWritePixels
glTexImage2D

 // For example, copy pixels from PBO to texture object

 glBindTexture(GL_TEXTURE_2D, texId);

 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pboId);

 glTexSubImage2D(GL_TEXTURE_2D,0, 0,0,w,h, GL_BGRA,
 GL_UNSIGNED_BYTE, 0);

With the current pbo context, 0 means the start of the pbo.

13 Graphics and Media Lab. at Seoul National University

• PBO has two targets:
– GL_PIXEL_PACK_BUFFER

– GL_PIXEL_UNPACK_BUFFER

• Usage: Update PBO

Usage of PBO

PBO

Framebuffer

or

Texture Object

Pack
(write to buffer)

Unpack
(read from buffer)

glReadPixels

glWritePixels
glTexImage2D

 // Similar to updating VBO

 glBindBuffer(GL_PIXEL_(UN)PACK_BUFFER, pboId);

 Glubyte *ptr = glMapBuffer(GL_PIXEL_(UN)PACK_BUFFER, GL_(WRITE)READ_ONLY);

 if(ptr) {

 // Update data directly on the mapped buffer

 ...

 glUnmapBuffer(GL_PIXEL_(UN)PACK_BUFFER);

 }

14 Graphics and Media Lab. at Seoul National University

The Code with PBO

bool initMemory() {
 …
 // PBO
 if(g_pboSupported) {
 glGenBuffersARB(2, g_pboIds);
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, g_pboIds[0]);
 // glBufferDataARB with NULL pointer only reserves the memory space.
 glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, DATA_SIZE, 0, GL_STREAM_READ_ARB);
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, g_pboIds[1]);
 glBufferDataARB(GL_PIXEL_UNPACK_BUFFER_ARB, DATA_SIZE, 0, GL_STREAM_DRAW_ARB);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
 }

Two pbos are created

Pbo0 is for pack

Creation of Pbo0 is complete

15 Graphics and Media Lab. at Seoul National University

The Code with PBO

void callback_display() {
 Blend the current square on top of the previous texture content;
 if (g_pboMode == 1) {
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, g_pboIds[index]);
 glReadPixels(0,0, g_winWidth, g_winHeight, PIXEL_FORMAT, PIXEL_TYPE, 0);
 // (1) reading framebuffer content to pbo0
 glBindTexture(GL_TEXTURE_2D, g_texId);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, g_pboIds[index]);
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, g_winWidth, g_winHeight,
 PIXEL_FORMAT, PIXEL_TYPE, 0);
 // (2) writing pbo0 content to texture object
 glBindTexture(GL_TEXTURE_2D, 0);
 glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0);
 glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0);
 }
}
// With FBO, the framebuffer content can be written directly to the texture obj

PBO

Framebuffer

or

Texture Object

Pack
(1)

Unpack
(2)

16 Graphics and Media Lab. at Seoul National University

• Vertex Buffer Object (VBO)
– allows vertex array data to be stored in the

device memory.

– GL_ARB_vertex_buffer_object

• Pixel Buffer Object (PBO)
– allows pixel data to be stored in the device

memory for further intra-GPU transfer

– GL_ARB_pixel_buffer_object

• Frame Buffer Object (FBO)
– allows rendered contents (color, depth,

stencil) to be stored in non-displayable
framebuffers (e.g., texture object,
renderbuffer object)

– GL_EXT_framebuffer_object

Abstract Buffer Objects

OpenGL controlled memory

17 Graphics and Media Lab. at Seoul National University

• Framebuffer:
– A collection of logical buffers

• color, depth, stencil, accumulation

– The final rendering destination
• window-system-provided framebuffer

• Framebuffer Object
– A struct that holds pointers to the memory.

– The content stored at the memory pointed by
the pointers can be framebuffer attachable
images (which is also called application-
created framebuffer).

– GL Extension allows rendered content to be
directed to the framebuffer attachable images
instead of the framebuffer.

– Framebuffer attachable images can be:
• Textures

• Renderbuffers (off-screen buffers)

Frame Buffer Object

FBO

18 Graphics and Media Lab. at Seoul National University

• To render the scene correctly, we need a
collection of logical buffers.
– color, depth, stencil, accumulation, ...

• FBO supports color, depth, stencil attachment
points.

Attachment Points

19 Graphics and Media Lab. at Seoul National University

Framebuffer object

Renderbuffer Objects

Renderbuffer

Images

Texture Objects

Texture

Images

FBO Architecture

Color attachment 0

Color attachment 1

...

Color attachment n

Depth attachment

Stencil attachment

Attachment Points

Attach

Framebuffer-attachable images

20 Graphics and Media Lab. at Seoul National University

• Allows results of rendering to framebuffer to be
directly read as texture.

• Better performance
– avoids copy from framebuffer to texture (using such as

glCopyTexSubImage2D)

• More applications
– Dynamic textures: procedurals, reflections

– Multi-pass techniques: anti-aliasing, motion blur, depth of field

– Image processing effects

– GPGPU

Why Render to Texture?

21 Graphics and Media Lab. at Seoul National University

• Renderbuffer
– Optimized only for being used as render targets.

• No sampler, no glTexImage2d, ...

– Usually, used to store OpenGL logical buffers such as stencil
or depth buffers.

– The only way to use renderbuffer is to attach it to a FBO.

Renderbuffer Object

22 Graphics and Media Lab. at Seoul National University

while(1) {

Draw a textured rectangle (to framebuffer);

Draw by blending the red square at the current mouse
position (to framebuffer);

Read pixels from the framebuffer (to CPU array);

Use the read pixels to update the texture;

}

Sketch Program – Without PBO/FBO

Host

Memory

Initial

Data

Texture

Object

Frame

Buffer

...

23 Graphics and Media Lab. at Seoul National University

while(1) {

Draw a textured rectangle (to fbo & framebuffer);

Draw by blending the red square at the current mouse
position (to fbo);

Read pixels from the framebuffer (to CPU array);

Use the read pixels to update the texture;

}

Sketch Program – With FBO

...

Host

Memory

Initial

Data

Texture

Object
FBO

Texture

Object

Frame

Buffer

swap

24 Graphics and Media Lab. at Seoul National University

Initializing FBO

 // Generate FBO ID

 GLuint fboID;

 glGenFramebufferEXT(1, &fboID);

 // Bind FBO

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);

 // ...do something with this FBO

 // unbind FBO

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

25 Graphics and Media Lab. at Seoul National University

Attach Texture Image to FBO

 // Generate texture

 GLuint texId;

 glGenTextures(1, &texID);

 // Attach texture for color drawing

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_COLOR_ATTACHMENTn_EXT,

 GL_TEXTURE_2D, texID, 0);

 // or for depth drawing

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT,

 GL_DEPTH_ATTACHMENT_EXT,

 GL_TEXTURE_2D, texID, 0);

26 Graphics and Media Lab. at Seoul National University

Attach Renderbuffer to FBO

 // Generate renderbuffer

 GLuint rbID;

 glGenRenderBufferEXT(1, &rbID);

 // Attach renderbuffer to framebuffer

 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT,

 GL_DEPTH_ATTACHMENT_EXT,

 GL_RENDERBUFFER_EXT,

 rbID);

27 Graphics and Media Lab. at Seoul National University

Check Completeness of FBO

 // Get error status

 Glenum status;

 status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT);

 // Check the status

 switch(status) {

 case GL_FRAMEBUFFER_COMPLETE_EXT: {... break;}

 case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT:

 case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT:

 case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT:

 case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT:

 case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT:

 case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT:

 Case GL_FRAMEBUFFER_UNSUPPORTED_EXT:

 ...

 }

28 Graphics and Media Lab. at Seoul National University

A Small Project with FBO

29 Graphics and Media Lab. at Seoul National University

Normal Rendering of Teapot

 void display() {

 glClear(...);

 glViewport(...);

 applyTransform();

 glutSolidTeapot(...);

 glFlush();

 glutSwapBuffers();

 }

30 Graphics and Media Lab. at Seoul National University

Rendering it to FBO

 void display() {

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);

 glClear(...);

 glViewport(...);

 applyTransform();

 glutSolidTeapot(...);

 glFlush();

 glutSwapBuffers();

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

 }

31 Graphics and Media Lab. at Seoul National University

Drawing a Cube with Attached Texture

 void display() {

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID);

 ...

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);

 glClear(...);

 glEnable(GL_TEXTURE_2D);

 glBindTexture(GL_TEXTURE_2D, texID);

 glBegin(...);

 ...

 glEnd();

 glDisable(GL_TEXTURE_2D);

 }

33 Graphics and Media Lab. at Seoul National University

Any Questions ?

