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• Vertex Buffer Object (VBO) 
– allows vertex array data to be stored in the 

device memory. 

– GL_ARB_vertex_buffer_object 

 

• Pixel Buffer Object (PBO) 
– allows pixel data to be stored in the device 

memory for further intra-GPU transfer 

– GL_ARB_pixel_buffer_object 

 

• Frame Buffer Object (FBO) 
– allows rendered contents (color, depth, 

stencil) to be stored in non-displayable 
framebuffers (e.g., texture object, 
renderbuffer object) 

– GL_EXT_framebuffer_object 

 

Abstract Buffer Objects 

OpenGL controlled memory 
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• Can be considered as an extension of VBO 
– But instead of storing vertex data, it stores pixel data 

– Pixel data can be managed more efficiently via PBO 

 

 

Pixel Buffer Object 
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Example – Sketch Program 



 

5 Graphics and Media Lab. at Seoul National University 

while(1) { 

Draw a textured rectangle (to framebuffer); 

Draw by blending the red square at the current mouse 
position (to framebuffer); 

Read pixels from the framebuffer (to CPU array); 

Use the read pixels to update the texture; 

} 

 

How to Implement it? 
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The Code w/o PBO or FBO 

if(g_pboMode == 0) { 
  glPixelStorei(GL_PACK_ALIGNMENT, 4); 
  glReadPixels(0,0, g_winWidth,g_winHeight, PIXEL_FORMAT, PIXEL_TYPE, g_imageData);  
  // reading framebuffer content to host memory 
  glBindTexture(GL_TEXTURE_2D, g_texId); 
  glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, g_winWidth, g_winHeight, PIXEL_FORMAT,  
  PIXEL_TYPE, g_imageData); 
  glBindTexture(GL_TEXTURE_2D, 0); 
} 
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• Via PBO, you can make pixel data transfer 
done within the device memory. 

 

– Conventional Pixel Data Transfer 

 

 

 

 

 

– Using PBO 

 

 

 

Speeding up Pixel Data Transfer with PBO 
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• To maximize the streaming performance, 
multiple PBOs can be used. 

 

– ex. Asynchronous uploading textures from CPU 

 

 

 

 

 

– ex. Asynchronous read-back 

 

Use of Multiple PBOs 
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• PBO has two targets (storages): 
– GL_PIXEL_PACK_BUFFER 

– GL_PIXEL_UNPACK_BUFFER 

 

 

 

Usage of PBO 
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• PBO has two targets: 
– GL_PIXEL_PACK_BUFFER 

– GL_PIXEL_UNPACK_BUFFER 

 

• Usage: Create & Delete 
 

 

 

Usage of PBO 

PBO 

Framebuffer 

or 

Texture Object 

Pack 
(write to buffer) 

Unpack 
(read from buffer) 

glReadPixels 

glWritePixels 
glTexImage2D 

 // Similar to creating VBO 

 GLuint pboId; 

 glGenBuffers(1, &pboId); 

 ... 

 glDeleteBuffers(1, &pboId); 
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• PBO has two targets: 
– GL_PIXEL_PACK_BUFFER 

– GL_PIXEL_UNPACK_BUFFER 

 

• Usage: PBO for reading 
 

 

 

Usage of PBO 

PBO 

Framebuffer 

or 

Texture Object 

Pack 
(write to buffer) 

Unpack 
(read from buffer) 

glReadPixels 

glWritePixels 
glTexImage2D 

 // For example, read pixels from the front framebuffer to PBO 

 glReadBuffer(GL_FRONT); 

 glBindBuffer(GL_PIXEL_PACK_BUFFER, pboId); 

 glReadPixels(0,0, w,h, GL_GBRA, GL_UNSIGNED_BYTE, 0); 
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• PBO has two targets: 
– GL_PIXEL_PACK_BUFFER 

– GL_PIXEL_UNPACK_BUFFER 

 

• Usage: PBO for writing 
 

 

 

Usage of PBO 

PBO 

Framebuffer 

or 

Texture Object 

Pack 
(write to buffer) 

Unpack 
(read from buffer) 

glReadPixels 

glWritePixels 
glTexImage2D 

 // For example, copy pixels from PBO to texture object 

 glBindTexture(GL_TEXTURE_2D, texId); 

 glBindBuffer(GL_PIXEL_UNPACK_BUFFER, pboId); 

 glTexSubImage2D(GL_TEXTURE_2D,0, 0,0,w,h, GL_BGRA,   
  GL_UNSIGNED_BYTE, 0); 

With the current pbo context, 0 means the start of the pbo. 
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• PBO has two targets: 
– GL_PIXEL_PACK_BUFFER 

– GL_PIXEL_UNPACK_BUFFER 

 

• Usage: Update PBO 
 

 

 

Usage of PBO 

PBO 

Framebuffer 

or 

Texture Object 

Pack 
(write to buffer) 

Unpack 
(read from buffer) 

glReadPixels 

glWritePixels 
glTexImage2D 

 // Similar to updating VBO 

 glBindBuffer(GL_PIXEL_(UN)PACK_BUFFER, pboId); 

 Glubyte *ptr = glMapBuffer(GL_PIXEL_(UN)PACK_BUFFER, GL_(WRITE)READ_ONLY); 

 if(ptr) { 

 // Update data directly on the mapped buffer 

 ... 

 glUnmapBuffer(GL_PIXEL_(UN)PACK_BUFFER); 

 } 
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The Code with PBO 

bool initMemory() { 
  … 
  // PBO 
  if(g_pboSupported) { 
    glGenBuffersARB(2, g_pboIds); 
    glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, g_pboIds[0]); 
    // glBufferDataARB with NULL pointer only reserves the memory space. 
    glBufferDataARB(GL_PIXEL_PACK_BUFFER_ARB, DATA_SIZE, 0, GL_STREAM_READ_ARB); 
    glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0); 
    glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, g_pboIds[1]); 
    glBufferDataARB(GL_PIXEL_UNPACK_BUFFER_ARB, DATA_SIZE, 0, GL_STREAM_DRAW_ARB); 
    glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0); 
  } 

Two pbos are created 

Pbo0 is for pack 

Creation of Pbo0 is complete 
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The Code with PBO 

void callback_display() { 
  Blend the current square on top of the previous texture content; 
  if (g_pboMode == 1) { 
      glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, g_pboIds[index]); 
      glReadPixels(0,0, g_winWidth, g_winHeight, PIXEL_FORMAT, PIXEL_TYPE, 0);  
      // (1) reading framebuffer content to pbo0 
      glBindTexture(GL_TEXTURE_2D, g_texId); 
      glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, g_pboIds[index]); 
      glTexSubImage2D(GL_TEXTURE_2D, 0, 0,0, g_winWidth, g_winHeight,      
   PIXEL_FORMAT, PIXEL_TYPE, 0); 
      // (2) writing pbo0 content to texture object 
      glBindTexture(GL_TEXTURE_2D, 0); 
      glBindBufferARB(GL_PIXEL_PACK_BUFFER_ARB, 0); 
      glBindBufferARB(GL_PIXEL_UNPACK_BUFFER_ARB, 0); 
  } 
} 
// With FBO, the framebuffer content can be written directly to the texture obj 

PBO 

Framebuffer 

or 

Texture Object 
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• Vertex Buffer Object (VBO) 
– allows vertex array data to be stored in the 

device memory. 

– GL_ARB_vertex_buffer_object 

 

• Pixel Buffer Object (PBO) 
– allows pixel data to be stored in the device 

memory for further intra-GPU transfer 

– GL_ARB_pixel_buffer_object 

 

• Frame Buffer Object (FBO) 
– allows rendered contents (color, depth, 

stencil) to be stored in non-displayable 
framebuffers (e.g., texture object, 
renderbuffer object) 

– GL_EXT_framebuffer_object 

 

Abstract Buffer Objects 

OpenGL controlled memory 



 

17 Graphics and Media Lab. at Seoul National University 

• Framebuffer: 
– A collection of logical buffers 

• color, depth, stencil, accumulation 

– The final rendering destination 
• window-system-provided framebuffer 

 

• Framebuffer Object 
– A struct that holds pointers to the memory. 

– The content stored at the memory pointed by 
the pointers can be framebuffer attachable 
images (which is also called application-
created framebuffer). 

– GL Extension allows rendered content to be 
directed to the framebuffer attachable images 
instead of the framebuffer. 

– Framebuffer attachable images can be: 
• Textures 

• Renderbuffers (off-screen buffers) 

 

 

 

Frame Buffer Object 

FBO 
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• To render the scene correctly, we need a 
collection of logical buffers. 
– color, depth, stencil, accumulation, ... 

 

 

 

 

 

 

• FBO supports color, depth, stencil attachment 
points. 

Attachment Points 
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Framebuffer object 

Renderbuffer Objects 

Renderbuffer 

Images 

Texture Objects 

Texture 

Images 

FBO Architecture 

Color attachment 0 

Color attachment 1 
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Color attachment n 
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• Allows results of rendering to framebuffer to be 
directly read as texture. 

 

• Better performance 
– avoids copy from framebuffer to texture (using such as 

glCopyTexSubImage2D) 

 

• More applications 
– Dynamic textures: procedurals, reflections 

– Multi-pass techniques: anti-aliasing, motion blur, depth of field 

– Image processing effects 

– GPGPU 

Why Render to Texture? 



 

21 Graphics and Media Lab. at Seoul National University 

• Renderbuffer 
– Optimized only for being used as render targets. 

• No sampler, no glTexImage2d, ... 

– Usually, used to store OpenGL logical buffers such as stencil 
or depth buffers. 

– The only way to use renderbuffer is to attach it to a FBO. 

 

Renderbuffer Object 
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while(1) { 

Draw a textured rectangle (to framebuffer); 

Draw by blending the red square at the current mouse 
position (to framebuffer); 

Read pixels from the framebuffer (to CPU array); 

Use the read pixels to update the texture; 

} 

 

Sketch Program – Without PBO/FBO 
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while(1) { 

Draw a textured rectangle (to fbo & framebuffer); 

Draw by blending the red square at the current mouse 
position (to fbo); 

Read pixels from the framebuffer (to CPU array); 

Use the read pixels to update the texture; 

} 

 

Sketch Program – With FBO 
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Initializing FBO 

 // Generate FBO ID 

 GLuint fboID; 

 glGenFramebufferEXT(1, &fboID); 

 // Bind FBO 

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID); 

 

 // ...do something with this FBO 

 

 // unbind FBO 

 glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); 
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Attach Texture Image to FBO 

 // Generate texture 

 GLuint texId; 

 glGenTextures(1, &texID); 

 // Attach texture for color drawing 

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, 

    GL_COLOR_ATTACHMENTn_EXT, 

    GL_TEXTURE_2D, texID, 0); 

 // or for depth drawing 

 glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, 

     GL_DEPTH_ATTACHMENT_EXT, 

     GL_TEXTURE_2D, texID, 0); 



 

26 Graphics and Media Lab. at Seoul National University 

 

Attach Renderbuffer to FBO 

 // Generate renderbuffer 

 GLuint rbID; 

 glGenRenderBufferEXT(1, &rbID); 

 

 // Attach renderbuffer to framebuffer 

 glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, 

                              GL_DEPTH_ATTACHMENT_EXT, 

                              GL_RENDERBUFFER_EXT, 

                              rbID); 
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Check Completeness of FBO 

 // Get error status 

 Glenum status; 

 status = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); 

 // Check the status 

 switch(status) { 

 case GL_FRAMEBUFFER_COMPLETE_EXT: {... break;} 

 case GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT_EXT: 

 case GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT_EXT: 

 case GL_FRAMEBUFFER_INCOMPLETE_DIMENSIONS_EXT: 

 case GL_FRAMEBUFFER_INCOMPLETE_FORMATS_EXT: 

 case GL_FRAMEBUFFER_INCOMPLETE_DRAW_BUFFER_EXT: 

 case GL_FRAMEBUFFER_INCOMPLETE_READ_BUFFER_EXT: 

 Case GL_FRAMEBUFFER_UNSUPPORTED_EXT: 

 ... 

 } 
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A Small Project with FBO 
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Normal Rendering of Teapot 

 void display() { 

     glClear(...); 

     glViewport(...); 

     applyTransform(); 

     glutSolidTeapot(...); 

     glFlush(); 

     glutSwapBuffers(); 

 } 
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Rendering it to FBO 

 void display() { 

     glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID); 

     glClear(...); 

     glViewport(...); 

     applyTransform(); 

     glutSolidTeapot(...); 

     glFlush(); 

     glutSwapBuffers(); 

     glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); 

 } 
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Drawing a Cube with Attached Texture 

 void display() { 

     glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, fboID); 

     ... 

     glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0); 

     glClear(...); 

     glEnable(GL_TEXTURE_2D); 

     glBindTexture(GL_TEXTURE_2D, texID); 

     glBegin(...); 

     ... 

     glEnd(); 

     glDisable(GL_TEXTURE_2D); 

 } 
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Any Questions ? 




